HUMAN MEMORY

stage theory: Long Term and Short Term Memory
- (note: Short Term Memory = "Working Memory")

<u>duration</u> Long Term Memory: relatively permanent Short Term Memory: seconds to minutes

storage capacity
Long Term Memory: infinite?
Short Term Memory: 7+/-2 "chunks" (organized packets of
information)

flow of information in memory

stimulus -> STM -> rehearsal* -> LTM

*two kinds of rehearsal: maintenance - <u>holds</u> info in STM elaborative - <u>moves</u> info to LTM

FURTHER DIFFERENCES BETWEEN STM & LTM

neural code

STM: dynamic - pattern of <u>activity</u> among a group of cells LTM: structural - pattern of <u>connections</u> within a group of cells

"trace consolidation" is what goes on during elaborative rehearsal - a memory trace changes from a dynamic to a structural pattern

- amnesia interruption of consolidation process
- retrograde amnesia for events BEFORE trauma
- anterograde amnesia for events AFTER trauma

FURTHER D	DIFFERENCES BETWEEN STM & LTM
forgetting	
STM: <u>DIS</u> pla	acement and/or decay
LTM: <u>MIS</u> pla - -	acement and/or retrieval failure proactive interference: old info affects new retroactive interference: new info affects old

Interference and Forgetting

	Think T	111102	neurovu
Proactive interference	A dis	rupts B	
Experimental	Study A	Study B	Test B
Control		Study B	Test B
Retroactive interference	B disrupts A		
Experimental	Study A	Study B	Test A
Control	Study A		Test A

DEPTH OF PROCESSING

- what kind of encoding will be most successful?...
 <u>deeper (more meaningful) processing</u> leads to better memory
 - connected to notion of elaborative rehearsal
 - Craik and Tulving (1975) experiment

KINDS OF MEMORY:

long-term vs. short-term ("working memory")

episodic (episodes, events with time and place): "I saw an elephant at a zoo in 2008."

vs.

<u>generic / semantic</u> (facts, concepts and meanings): "An elephant has big floppy ears and a trunk."

KIND	S OF MEMORY:
<u>explici</u> recall recogn	<u>t</u> (reference to prior learning experience) - "what were the words on the list you read?" ition - "circle the words you saw earlier"
vs.	
<u>implic</u> primin	it (no conscious awareness of remembering) g - read list of words then do tasks stem completion - "MOT" word fragment completion - "UOOOIE"

RETRIEVAL

ENCODING SPECIFICITY PRINCIPLE (or COMPATIBILITY PRINCIPLE):

- retrieval cue current stimulus that aids retrieval
- any memory for an item has the item's context wrapped up in it too
- context (cues) at retrieval should be as much as possible like context at encoding

ex.: learn list - "figure, data, diagram, table, chart, graph..."

- then "FURNITURE" would <u>not</u> be a good retrieval cue for "table"
- ex.: learn list "Ford, Honda, Toyota, Saturn, Lexus..."
- then "RINGS" would <u>not</u> be a good retrieval cue for "Saturn"

IS RETRIEVING A MEMORY LIKE PLAYING BACK A TAPE?

Loftus and Palmer (1974) experiment:

1) view slides of car accident

2) ask: "How fast were the cars going when they <u>hit</u> each other?"

or:

"How fast were the cars going when they **smashed into** each other?"

3) 1 week later: "Did you see any broken glass in the pictures?"

YES response more likely for "smash" group than "hit" group

CONCLUSION: at least in part, memory involves reconstruction of remembered information

memory may be distorted by other information

GENERIC /SEMANTIC MEMORY

- retrieval = search through network of concepts
- organized according to semantic relatedness (closeness of meaning)
- activation of one concept spreads to other related concepts
- "What does 'Rosebud' mean?"
 - "Do chickens have lips?"
 - "How many arms did Aristotle have?"
 - "How many ears did Vincent van Gogh have?"

