used when data are not scores that can be averaged, but instead are frequencies of observations that can only be counted $-e.g.,$ how many subjects fall into various categories

H0: population frequencies are as stated by the expected frequencies

H1: population frequencies are different than the stated expected frequencies

Test of Goodness of Fit: one row of cells

Test of Independence: cells in rows and columns

- a "contingency table" or "matrix"
- are the row variable and column variable related?

Test of Goodness of Fit: Are the expected frequencies a "good fit" to the observed frequencies? Rejecting the null hypothesis says no, they're not.

- Test of Independence: Use expected frequencies that are based on the assumption that the row and column variables are independent, i.e., there's no relationship
- then rejecting H0 STILL means rejecting those expected frequencies as a "good fit" to the observed frequencies -- which means rejecting that assumption that the variables are independent, which means believing they're related!

The Chi-Square Test

ASSUMPTIONS OF THE CHI-SQUARE TEST

- 1) all observations are independent not the variables, but the observations themselves (e.g. knowing the category one subject is in provides no information about another subject's category)
- e.g., in a study of helping behavior, one subject can't tell the next that they helped or not, which might influence their behavior
- This also means each observation must fall into ONE, AND ONLY ONE, category – otherwise, an observation in category 1 would not be independent of the same subject observed in category 2
- e.g., a subject who intially did help but then did not help in another scenario cannot be included in both the "helped" and "didn't help" category counts
- 2) all expected frequencies (f_E) are at least 5 (all $f_E \ge 5$)
- this is due to the math of finding probabilities or p-values; with any of the $f_E < 5$, the probabilities are distorted and inaccurate

 $\chi^2(df) = \Sigma [(f_O - f_E)^2 / f_E]$ or nicer looking, χ^2 $(df) = \sum \frac{(f_O - f_E)^2}{f_E}$ $\rm f_E$ The tests only differ in how you find "df" and "expected frequencies"

Test of Goodness of Fit

 $df = (C-1) = (number of cells or categories or "columns" minus 1)$ f_E for each cell = "proportion P (NOT a p-value!) of the population in that category" times "total number of subjects" = $P*N$; for equal probabilities, all f_E are same, and the formula simplifies to "total number of subjects / number of cells" = N/C

Test of Independence

 $df = (R-1)(C-1) = (number of rows minus 1) times (number of$ columns minus 1)

 $f_E = (f_R * f_C) / N =$ (row margin frequency) times (column margin frequency), divided by total number of observations

The Chi-Square Test

WHY those df in each test?...

- $df = (C-1)$... because if you know how many total observations there are, then knowing 2 of the 3 category frequencies, or 3 of the 4, etc., tells you what the last category frequency must be
- e.g. with 40 observations, if three of the frequencies are 7, 13, and 15, the last must be 5 7 13 15 ?
- $df = (R-1)(C-1)$... because if you know the margin frequencies, then knowing 1 of the 2x2 frequencies, or 4 of the 3x3 frequencies, etc., tells you what the other category frequencies must be
- e.g. if row margin $1 = 10$ and $2 = 20$, and column margin $1 = 12$ and $2 = 18$, knowing R1C1 frequency is 4 means R1C2 must be 6, and then $R2C1$ must be 8 and $R2C2$ must be 22

WHY those expected frequencies in the Test of Independence?...

 $f_E = (f_R * f_C) / N$... because if the rows and columns are independent, then the proportion of observations in the overall column variable (which would be f_c/N) must be applicable to each separate row too

Example: applying that proportion, which for column 1 is $f_C/N =$ 12/30, to the row 1 margin 10 gives $f_C / N * f_R = 12/30 * 10 = 4$ - but $f_E = f_C/N * f_R$ can just be rearranged into $f_E = (f_R * f_C) / N$

The Chi-Square Test

Finding a p-value to go with the value of χ^2 :

- use df to choose a row to read in the table
- read the "proportion in critical region" column under your p-value cutoff (or α, Greek letter "alpha") – usually $.05$
- the value for χ^2 is listed that has exactly that p-value for those df
- remember the general rule: a LARGER statistic has a SMALLER p
- if YOUR χ^2 value is LARGER than the χ^2 for p = .05, then YOUR p-value must be SMALLER than .05

For $df = 4$ (e.g., from a 5-category Goodness of Fit test, or 3x3 Test of Independence) and for $\alpha = .05$, $\chi^2 = 9.49$

If your χ^2 is less than 9.49, you FAIL TO REJECT H0; if it's greater, you REJECT H0

EFFECT SIZE

Test of Goodness of Fit (one row, any number of cells): Cohen's $w = \sqrt{[\chi^2/N]}$ (textbook's formula is equivalent)

-
- same as ϕ below, only w can't be interpreted as a correlation like ϕ can, because there's only one variable in the Goodness of Fit test

Test of Independence

when there are 2 rows and 2 columns $(2x2 \text{ contingency table})$:

"phi coefficient" $\phi = \sqrt{[\chi^2/N]}$ – which is actually a form of correlation

when there are more than 2 rows or columns $(2x3, 3x2, 4x3, etc.)$: "Cramér's V" = $\sqrt{\chi^2 / N(df^*)}$ where N is multiplied by df* (= whichever is SMALLER out of R-1 and C-1)

- notice that means you could always use V, because it's same as ϕ for $2x2$ tables (try it!) – and incidentally also for $2x3$ and $3x2$ tables

