Section 9.10  Hypothesis Testing 259

Given sp,_p,, We can now solve for

- —0.40) — (0.
t:bl bzz( 0.40) — ( 020):__1.04
Sbi—by 0.192

on 198 df. Because fp,s(198) = £1.97, we would fail to reject Hy and would therefore
conclude that we have no reason to doubt that life expectancy decreases as a function of
smoking at the same rate for males as for females.

It is worth noting that although Hy: b* =0 is equivalent to Hy:p = 0, it does not
follow that Hy: b} — b3 = 0 is equivalent to Hy: p; — p2 = 0. If you think about it for a
moment, it should be apparent that two scatter diagrams could have the same regres-
sion line (b} = b3) but different degrees of scatter around that line, hence, p; # p,. The
reverse also holds—two different regression lines could fit their respective sets of data
equally well.

Testing the Difference Between Two Independent rs

When we test the difference between two independent rs, a minor difficulty arises. When
p # 0, the sampling distribution of r is not approximately normal (it becomes more and
more skewed as p = £1.00), and its standard error is not easily estimated. The same holds
for the difference r| — r,. This raises an obvious problem because, as you can imagine, we
will need to know the standard error of a difference between correlations if we are to create
a t test on that difference. Fortunately, R. A. Fisher provided the solution.

Fisher (1921) showed that if we transform r to

r'=(05)log, |1
—r

1+r{

then r’ is approximately normally distributed around p’ (the transformed value of p) with
standard error

1
N -3

sr’ =

(Fisher labeled his statistic “z,” but “r’” is often used to avoid confusion with the standard
normal deviate.) Because we know the standard error, we can now test the null hypothesis
that p; — pr = O by converting each r to r’ and solving for

/
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Note that our test statistic is z rather than ¢ because our standard error does not rely on sta-
tistics computed from the sample (other than N) and is therefore a parameter.

Appendix r’ tabulates the values of r’ for different values of r, which eliminates the need
to solve the equation for r'.

To take a simple example, assume that for a sample of 53 males, the correlation between
number of packs of cigarettes smoked per day and life expectancy was .50. For a sample of
43 females, the correlation was .40. (These are unrealistically high values for r, but they
better illustrate the effects of the transformation.) The question of interest is, Are these two
coefficients significantly different, or are the differences in line with what we would expect
when sampling from the same bivariate population of X, Y pairs?
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Males Females
r .50 40
r .549 424
N 53 53
549 — 424 125 125

7= = = =~ 0625
[1 N 1 [2 1
53—3 ' 53—3 50 5

Because zq,; = 0.625 is less than z,gps = £1.96, we fail to reject Hy and conclude that with
a two-tailed test at « = .05, we have no reason to doubt that the correlation between smok-
ing and life expectancy is the same for males as it is for females.

Testing the Hypothesis That p Equals Any Specified Value

Now that we have discussed the concept of r’, we are in a position to test the null hypothe-
sis that p is equal to any value, not just to zero. You probably can’t think of many situations
in which you would like to do that, and neither can 1. But the ability to do so allows us to
establish confidence limits on p, a more interesting procedure.

As we have seen, for any value of p, the sampling distribution of ' is approximately
normally distributed around p’ (the transformed value of p) with a standard error of ﬁ
From this it follows that

N -3
is a standard normal deviate. Thus, if we want to test the null hypothesis that a sample r of
.30 (with N = 103) came from a population where p = .50, we proceed as follows:
r=.30 r'=.310
p=.50 p'=.549
N=103 s,=1/+/N—-3=0.10

310 .549
2= 7000

Because 7o, = —2.39 is more extreme than z g5 = +£1.96, we reject Hy at o = .05 (two-
tailed) and conclude that our sample did not come from a population where p = .50.

= —0.239/0.10 = ~2.39

Confidence Limits on p

We can easily establish confidence limits on p by solving the previous equation for p
instead of z. To do this, we first solve for confidence limits on p’, and then convert p’ to p.

therefore

1
Vv =roe
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and thus

1
N -3

Cl(p") =r'" zop2

For our stress example, r = .506 (' = .557) and N = 107, so the 95% confidence limits are

1
I’=.57:{:l.9\/7-—
Cl(p) = .5 6 o

= 557 + 1.96(0.098) = .557 £ 0.192
= 365 <p’ <.749

Converting from p’ back to p and rounding,
350 < p < .635

Thus, the limits are p = .350 and p = .635. The probability is .95 that limits obtained in
this way encompass the true value of p. Note that p = 0 is not included within our limits,
thus offering a simultaneous test of Hy: p = 0, should we be interested in that information.

Confidence Limits versus Tests of Significance

At least in the behavioral sciences, most textbooks, courses, and published research have
focused on tests of significance, and paid scant attention to confidence limits. In some cases
that really is probably appropriate, but in other cases, it leaves the reader short.

In this chapter, we have repeatedly referred to an example on stress and psychological
symptoms. For the first few people who investigated this issue, it really was an important
question whether there was a significant relationship between these two variables. But now
that everyone believes it, a more appropriate question becomes how large the relationship is.
And for that question, a suitable answer is provided by a statement such as the correlation
between the two variables was .506, with a 95% confidence interval of .350 < p < .635.
(A comparable statement from the public opinion polling field would be something like
r = .506 with a 95% margin of error of %.15(approx.)."?

Testing the Difference Between Two Nonindependent rs

Occasionally, we come across a situation in which we want to test the difference between
two correlations that are not independent. (I am probably asked this question a couple of
times per year.) One case arises when two correlations share one variable in common. We
will see such an example later. Another case arises when we correlate two variables at Time
1 and then again at some later point (Time 2), and we want to ask whether there has been a
significant change in the correlation over time. I will not cover that case, but a very good
discussion of that particular issue can be found at core.ecu.edu/psyc/wuenschk/StatHelp/
ZPE.doc and in a paper by Raghunathan, Rosenthal, and Rubin (1996).

As an example of correlations that share a common variable, Reilly, Drudge, Rosen,
Loew, and Fischer (1985) administered two intelligence tests (the WISC-R and the McCarthy)
to first-grade children, and then administered the Wide Range Achievement Test (WRAT) to

131 had to insert the labe} “approx.” here because the limits, as we saw earlier, are not exactly symmetrical
around 7.
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those same children 2 years later. Reilly et al. obtained, among other findings, the following
correlations:

WRAT WISC-R McCarthy

WRAT 1.00 .80 72
WISC-R 1.00 .89
McCarthy 1.00

Note that the WISC-R and the McCarthy are highly correlated but that the WISC-R corre-
lates somewhat more highly with the WRAT (reading) than does the McCarthy. It is of
interest to ask whether this difference between the WISC-R-WRAT correlation (.80) and
the McCarthy—WRAT correlation (.72) is significant, but to answer that question requires a
test on nonindependent correlations because they both have the WRAT in common and they
are based on the same sample.

When we have two correlations that are not independent—as these are not, because the
tests were based on the same 26 children—we must take into account this lack of indepen-
dence. Specifically, we must incorporate a term representing the degree to which the two
tests are themselves correlated. Hotelling (1931) proposed the traditional solution, but a
better test was devised by Williams (1959) and endorsed by Steiger (1980). This latter test
takes the form

(N = D + ry3)

N -1 (ri2 + ri3)? 3
2| —— 1 IR — (1 -
(N—?;)' | + 7 (1 —rp3)

t=(r;2 —r)

where
IRl = (1-rf, —riy —r3) + (2riarizras)

This ratio is distributed as ¢ on N — 3 df. In this equation, r}, and ry; refer to the corre-
lation coefficients whose difference is to be tested, and r; refers to the correlation between
the two predictors. | R| is the determinant of the 3 x 3 matrix of intercorrelations, but you
can calculate it as shown without knowing anything about determinants.

For our example, let

ri» = correlation between the WISC-R and the WRAT = .80

ri3 = correlation between the McCarthy and the WRAT = .72

ro3 = correlation between the WISC-R and the McCarthy = .89

N =126

then
[R| = (1 — .80% — .72% — .89%) + (2)(.80)(.72)(.89) = .075

(25)(1 + .89)

1=(80-.72) | —— (:80 +.72)
) (%) (075) +

(1 —.89)°
=1.36

A value of 1o, = 1.36 on 23 dfis not significant. Although this does not prove the argu-
ment that the tests are equally effective in predicting third-grade children’s performance on
the reading scale of the WRAT, because you cannot prove the null hypothesis, it is consis-
tent with that argument and thus supports it.






