CHAPTER 7
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Hypothesis Tests
Applied to Means

Objectives

To introduce the t test as a procedure for testing hypotheses with
measurement data, and to show how it can be used with several different
designs. To describe ways of estimating the magnitude of any differences that
do appear.
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In CHAPTERS 5 AND 6, we considered tests dealing with frequency (categorical) data. In those
situations, the results of any experiment can usually be represented by a few subtotals—the
frequency of occurrence of each category of response. In this and subsequent chapters, we
will deal with a different type of data, which I have previously termed measurement or
quantitative data.

In analyzing measurement data, our interest can focus either on differences between
groups of subjects or on the relationship between two or more variables. The question of
relationships between variables will be postponed until Chapters 9, 10, 15, and 16. This
chapter will be concerned with the question of differences, and the statistic we will be most
interested in will be the sample mean.

Low-birthweight (LBW) infants (who are often premature) are considered to be at risk

for a variety of developmental difficulties. As part of an example we will return to later, sup-
pose we took 25 LBW infants in an experimental group and 31 LBW infants in a control
group, provided training to the parents of those in the experimental group on how to recog-
nize the needs of LBW infants, and, when these children were 2 years old, obtained a mea-
sure of cognitive ability. Suppose that we found that the LBW infants in the experimental
group had a mean score of 117.2, whereas those in the control group had a mean score of
106.7. Is the observed mean difference sufficient evidence for us to conclude that 2-year-old
LBW children in the experimental group score higher, on average, than do 2-year-old LBW
control children? We will answer this particular question later; I mention the problem here
to illustrate the kind of question we will discuss in this chapter.

7.1 Sampling Distribution of the Mean

sampling
distribution of
the mean

central limit
theorem

As you should recall from Chapter 4, the sampling distribution of a statistic is the distribu-
tion of values we would expect to obtain for that statistic if we drew an infinite number of
samples from the population in question and calculated the statistic on each sample. Because
we are concerned in this chapter with sample means, we need to know something about
the sampling distribution of the mean. Fortunately, all the important information about the
sampling distribution of the mean can be summed up in one very important theorem: the cen-
tral limit theorem. The central limit theorem is a factual statement about the distribution of
means. In an extended form, it states,

Given a population with mean p. and variance o2, the sampling distribution of the mean
(the distribution of sample means) will have a mean equal to W (i.e., pz = W), a vari-
ance (0‘%) equal to o2/n, and a standard deviation (o) equal to o/ /n. The distribution
will approach the normal distribution as n, the sample size, increases.!

This is one of the most important theorems in statistics. Beyond telling us what the mean
and variance of the sampling distribution of the mean must be for any given sample size, the
theorem states that as n increases, the shape of this sampling distribution approaches nor-
mal, whatever the shape of the parent population. The importance of these facts will become
clear shortly.

The rate at which the sampling distribution of the mean approaches normal as n in-
creases is a function of the shape of the parent population. If the population is itself normal,

! The central limit theorem can be found stated in a variety of forms. The simplest form merely says that the
sampling distribution of the mean approaches normal as n increases. The more extended form given here includes
all the important information about the sampling distribution of the mean.

uniform
distribution
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Figure 7.1 50,000 observations from a uniform distribution

the samp_ling distribution of the mean will be normal regardless of n. If the population is
symmetric but nonnormal, the sampling distribution of the mean will be nearly normal
even for small sample sizes, especially if the population is unimodal. If the population is
markequ skewed, sample sizes of 30 or more may be required before the means closely
approximate a norma} distribution.

To illustrate the central limit theorem, suppose we have an infinitely large population of
random numbers evenly distributed between 0 and 100, This population s:ill have what is
cglle}i a uniform distribution—every value between 0 and 100 will be equally likely. The
distribution of 50,000 observations drawn from this population is shown in Figure 7.1: You
can see thét the distribution is very flat, as would be expected. For uniform distributions, the
mean () is known to be equal to one-half of the range (50), the standard deviation (c;) is
:(:Zc’)v::':u:eg ;gga;.to 28.87 (the range divided by the square root of 12), and the vaﬁénce

Now suppose we drew 5,000 samples of size 5 (n = 5) from this population and plotted
the resulting sample means. Such sampling can be easily accomplished with a simple
computelf program,; the results of just such a procedure are presented in Figure 7.2a, with a
normal distribution superimposed. It is apparent that the distribution of means, altho;mh not
exactly nf)rmal, is at least peaked in the center and trails off toward the extremes. (Actaually
th'e superimposed normal distribution fits the data quite well.) The mean and standard devi:
ation of this distribution are shown, and they are extremely close to p = 50 and o =
cr./‘/_ =128.87/4/5 = 12.91. Any discrepancy between the actual values and those ;re-
dicted by the central limit theorem is attributable to rounding error and to the fact that we
did not draw an infinite number of samples.

Now suppose we repeated the entire procedure, only this time drawing 5,000 samples of
30 oPservanons each. The results for these samples are plotted in Figure 7.2b. Here you see
that just as the central limit theorem predicted, the distribution is approximately normal, the

mean is again at p = 50, and the standard deviation has been reduced t i
g e uced to approximately
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7.2 Testing
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Figure 7.2b Sampling distribution of the mean when n =30

Hypotheses About Means‘-fcr Known

From the central limit theorem, we know all the important characteristics of the sampling

bution of the mean. (We know its shape, its mean, and its standard deviation.) On the

istril
b s about means. But

basis of this information, we are in a position to begin testing hypothese :
first it might be well to go back to something we discussed with respect to the nonrmal dis-
tribution. In Chapter 4, we saw that we could test a hypothesis about the population from

T

standard error
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which a single score (in that case, a finger-tapping score) was drawn by calculating

X—p

I\
and then, if the population is normally distributed, by obtaining the probability of a value of
z as low as the one obtained by using the tables of the standard normal distribution. We ran
a one-tailed test on the null hypothesis that the tapping rate (70) of a single individual was
drawn at random from a normally distributed population of healthy subjects’ tapping rates
with 2 mean of 100 and a standard deviation of 20. We did this by calculating

X—pn
TS
_70-100 =30
T2 T
=-15

and then using Appendix z to find the area below z = —1.5.% This value is 0.0668. Thus,
approximately 7% of the time, we would expect a score as low as this if we were sampling
from a healthy population. This probability was not less than our preselected significance
level of a = .05, so we could not reject the null hypothesis. The tapping rate for the person
we examined was not an unusual rate for healthy individuals. Although in this exarnple we
were testing a hypothesis about a single observation, the same logic applies to testing
hypotheses about sample means. The only difference is that instead of comparing an obser-
vation with a distribution of observations, we will compare a mean with a distribution of
means (the sampling distribution of the mean).

In most situations in which we test a hypothesis about a population mean, we don’t have
any knowledge about the variance of that population. (This is the main reason we have ¢ tests,
which are the main focus of this chapter.) However, in a limited number of situations we do
know g. A discussion of testing a hypothesis when & is known provides a good transition
from what we aiready know about the normal distribution to what we want to know about
t tests. An example of behavior problem scores on the Achenbach Child Behavior Checklist
(CBCL) (Achenbach, 1991a) is a useful example for this purpose because we know both the
mean and the standard deviation for the population of Total Behavior Problems scores
(p. = 50 and ¢ = 10). Assume that a random sample of five children under stress had a mean
score of 56.0. We want to test the null hypothesis that these five children are a random sample
from a population of normal children (i.e., normal with respect to their general level of behav-
ior problems). In other words, we want to test Hp: . = 50 against the alternative H;: p. # 50.

Because we know the mean and standard deviation of the population of general behav-
ior problem scores, we can use the central limit theorem to obtain the sampling distribution
when the null hypothesis is true. The central limit theorem states that if we obtain the
sampling distribution of the mean from this population, it will have a mean of . = 50, a
variance of a%/n = 10*/5 = 100/5 = 20, and a standard deviation (usually referred to as
the standard error)’ of 6/./n = 4.47. This distribution is diagrammed in Figure 7.3. The
arrow in Figure 7.3 represents the location of the sample mean.

2 Recall that the normial distribution is symmetric. and thus there are no entries for negative values of z. The
“smaller portion™ for 2 = — .5 is the same as the “smaller portion™ for z = +1.5.

3 The standard deviation of any sampling distribution is normally referred to as the standard error of that distribution.
Thus, the standard deviation of means is called the standard error of the mean (symbolized by o), whereas the
standard deviation of differences between means, which will be discussed shortly, is called the standard egror of dif-
ferences between means and is symbolized by o, _,- Minor changes in terminology, such as calling 2 standard
deviation a standard ervor, are not really designed to confuse studeats, though they probably have that effect.
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0s0 .th lez;l (\)é signiﬁlcc:lance, we would not reject Hy because the obtained probability is greater
an .05. We would conclude that we have no evidence that stressed chiids
030 fewer behavior problems than other children. children show more ot
% 020 i
3 7.3 Testing a Sample Mean When ¢ Is
o Unknown—The One-Sample t Test
0 I i L J A The di i ot
= = = = o \ ” p he preceding example was chosen deliberately from among a fairly limited number of situ-
- ations in which the population standard deviation (o) is known. In the general case, we rarely

know the value of o and usually have to estimate it by way of the sample standard deviation
(s). When we replace o with s in the formula, however, the nature of the test changes. We can
no longer declare the answer to be a z score and evaluate it using tables of z. Instead,. we will
denote the answer as f and evaluate it using tables of , which are different from tables of z
The reasoning behind the switch from z to ¢ is really rather simple. The basic problem tha;
requires this change to ¢ is related to the sampling distribution of the sample variance.

Figure 7.3 Sampling distribution of the mean for n = 5 drawn from a population
with p = 50and o = 10

Because we know that the sampling distribution is normally distributed with a mean of
50 and a standard error of 4.47, we can find areas under the distribution by referring to
tables of the standard normal distribution. Thus, for example, because two standard errors
is 2(4.47) = 8.94, the area to the right of X = 58.94 is simply the area under the normal
distribution greater than two standard deviations above the mean.

For our particular situation, we first need to know the probability of a sample mean

greater than or equal to 56, and thus, we need to find the area above X = 56. We can calcu-
late this in the same way we did with individual observations, with only a minor change in
the formula for z:
X - X-
P pecomes = L=

The Sampling Distribution of s2

Bécaus-e the ¢ test uses s2 as an estimate of o2, it is important that we first look at the sam-
pling dlstx.-ibution of 5. This sampling distribution gives us some insight into the problems
we are going to encounter. We saw in Chapter 2 that s? is an unbiased estimate of ¢%, mean-
ing that with repeated sampling, the average value of 52 will equal o2, Although an u;nbiased
efnn}ato.r is a nice thing, it is not everything. The problem is that the shape of the sampling
distribution of s is positively skewed, especially for small samples. I drew 50,000 samples
of n =35 from a population with u = 5 and a? = 50. I calculated the variance for each
sample, and have plotted those 50,000 variances in Figure 7.4. Notice that the mean of this

7= —
ox

which can also be written as
X—p

o

Jn
For our data, this becomes

B30 _ 6y
4.47 4.47
Notice that the equation for z used here is in the same form as our earlier formula for z.
The only differences are that X has been replaced by X and o has been replaced by o%.
These differences occur because we are now dealing with a distribution of means, and thus,
the data points are now means, and the standard deviation in question is now the standard
error of the mean (the standard deviation of means). The formula for z continues to repre-
sent (1) a point on a distribution, minus (2) the mean of that distribution, all divided by
(3) the standard deviation of the distribution. Now rather than being concerned specifically Std. Dev = 35.04
with the distribution of X, we have re-expressed the sample mean in terms of z scores and Mean =49.9
can now answer the question with regard to the standard normal distribution. & o N < 50000.00
From Appendix z, we find that the probability of a z as large as 1.34 is .0901. Because : . y - )
we want a two-tailed test of Ho, we need to double the probability to obtain the probability
of a deviation as large as 1.34 standard errors in either direction from the mean. This is 3
2(.0901) = .1802. Thus, with a two-tailed test (that stressed children have a mean behavior 3 Sample variance
problem score that is different in either direction from that of normal children) at the 7} . Figure 7.4 Sampling distribution of the sample variance
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The t Statistic

Student’'s
t distribution

distribution is almost exactly 50, reflecting the unbiased nature of 5% as an eslimat.e of cf,
However, the distribution is very positively skewed. Because of ths skewness of th{s dlSLl:l-
bution, an individual value of s? is more likely to underestimate o~ th.an to overesn.ma‘te it,
especially for small samples. Also because of this skew:}ess, the resulting value of t is lllz;ely
to be larger than the value of z that we would have obtained had ¢ been known and used.

We are going to take the formula that we just developed for z,

t= 5
2
= 2
n n

We know that for any particular sample, s” is more likely than not to be smaller than the
appropriate value of o2, so we can see that the ¢ formula i§ mo.re likely than not to pro.duce a
larger answer (in absolute terms) than we would have obtained if we had solved for ¢ using the
true but unknown value of o2 itself. (You can see this in Figure 7.4, where more than half of the
observations fall to the left of a2.) As a result, it would not be fair to treat the answe.r asazscore
and use the table of z. To do so would give us too many “significant™ resul§—that is, we would
make more than 5% Type ] errors. (For example, when we were calculating z,we rejfected ro
at the .05 level of significance whenever z exceeded +1.96. If we criate a 5|'tuanon. in which
Hy is true, repeatedly draw samples of n =35, and use 5 in place of %, Yve will obtain a value
of +1.96 or greater more than 10% of the time. The ¢ cutoff in this case is 2.776.)

The solution to our problem was supplied in 1908 by William Gosset, who worked for
the Guinness Brewing Company and wrote under the pseudonym of Student, supposedly
because the brewery would not aflow him to publish under his own name. 53osset showed
that if the data are sampled from a normal distribution, using 5% in place of o° ws)uld.lead to
a particular sampling distribution, now generally known as1 Student’s ¢ distribution. As
a result of Gosset’s work, all we have to do is substitute s°, denote the answer as f, and
evaluate ¢ with respect to its own distribution, much as we evaluated z with respect to the
normal distribution. The ¢ distribution is tabled in Appendix ¢, and examples of the actual
distribution of 7 for various sample sizes are shown graphically in Figure 7.5.

t:=2

£

Figure 7.5 tdistribution for 1, 30, and oo degrees of freedom
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As you can see from Figure 7.5, the distribution of 1 varies as a function of the degrees
of freedom, which for the moment we will define as one less than the number of observa-
tions in the sample. As n = o0, p(s’ < @) = p(s* > ¢7). (The symbol => is read
“approaches.”) The skewness of the sampling distribution of s> disappears as the number of
degrees of freedom increases, so the tendency for s to underestimate o will also disappear.
Thus, for an infinitely large number of degrees of freedom, 7 will be normally distributed
and equivalent to z.

The test of one sample mean against a known population mean, which we have just
performed, is based on the assumption that the sample was drawn from a normally dis-
tributed population. This assumption is required primarily because Gosset derived the
t distribution assuming that the mean and variance are independent, which they are with a
normal distribution. In practice, however, our ¢ statistic can reasonably be compared with
the ¢ distribution whenever the sample size is sufficiently large to produce a normal sam-
pling distribution of the mean. Most people would suggest that an n of 25 or 30 is “suffi-
ciently large” for most situations, and for many situations it can be considerably smaller
than that.

On the other hand, Wuensch (1993, personal communication) has argued convincingly
that, at least with very skewed distributions, the fact that » is large enough to lead to a sam-
pling distribution of the mean that appears to be normal does not guarantee that the result-
ing sampling distribution of ¢ follows Student's  distribution. The derivation of + makes
assumptions both about the distribution of means (which is under the control of the central
limit theorem), and the variance, which is not controlled by that theorem.

Degrees of Freedom

I'have mentioned that the ¢ distribution is a function of the degrees of freedom (df). For the
one-sample case, df = n — 1, the one degree of freedom has been lost because we used the
sample mean in calculating s2. To be more precise, we obtained the variance (s*) by calculat-
ing the deviations of the observations from their own mean (X — X), rather than from the
population mean (X — .). Because the sum of the deviations about the mean [3 (X — X)] is
always zero, only n — 1 of the deviations are free to vary (the nth deviation is determined if
the sum of the deviations is to be zero).

Psychomotor Abilities of Low-Birthweight Infants

An example drawn from an actual study of low-birthweight (LBW) infants will be useful
at this point because that same general study can illustrate both this particular ¢ test and
other ¢ tests to be discussed later in the chapter. Nurcombe et al. (1984) reported on an
intervention program for the mothers of LBW infants. These infants present special prob-
lems for their parents because they are (superficially) unresponsive and unpredictable, in
addition to being at risk for physical and developmental problems. The intervention
program was designed to make mothers more aware of their infants’ signals and more
responsive to their needs, with the expectation that this would decrease later developmen-
tal difficulties often encountered with LBW infants. The study included three groups of
infants: an LBW experimental group, an LBW control group, and a normal-birthweight
(NBW) group. Mothers of infants in the last two groups did not receive the intervention
treatment.

One of the dependent variables used in this study was the Psychomotor Development
Index (PDI) of the Bayley Scales of Infant Development. This scale was first administered to
all infants in the study when they were 6 months old. Because we would not expect to see
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Table 7.1 Data for LBW infants on Psychomotor Development Index (PDI)

Raw Data Stem-and-Leaf Display
96 120 112 100 Stem Leaf
125 96 86 124 " 3
116 89 8

8 iod 8. 66999999

127 89 89 124 ox 222222
O I N P
112 52 22 ! 10* 00002222444
120 124 83 116

10. 88888
108 96 108 96 1+ 222
92 108 108 95 -
100 11. 667

120 86 %2 12% 000000444
104 100 120 120 12 567

89 92 102 98 :

92 98 100 108

89 117 112 126

Boxplot
L 1 1 S | L t 1 1 1 1

Mean = 104.125

ShE —{— T
N =56

differences in psychomotor development between the two LBW groups as early as 6 n'.lonths,
it makes some sense to combine the data from the two groups and ask whether LBW infants
in general are significantly different from the normative population mean of 100 usually
found with this index. '

The data for the LBW infants on the PDI are presented in Table 7.1. Included in this
figure are a stem-and-leaf display and 2 boxplot. These two displays are important for ex-
amining the general nature of the distribution of the data and for searching for the presence
of outliers.

From the stem-and-leaf display, we can see that the data, although not exactly normally
distributed, at least are not badly skewed. Given our sample size (56), it is reasonable to
assume that the sampling distribution of the mean would be reasonably normal. One inter-
esting and unexpected finding that is apparent from the stem-and-leaf display is the preva-
lence of certain scores. For example, there are five scores of 108, but no other scores
between 104 and 112. Similarly, there are six scores of 120, but no other scores between 117
and 124. Notice also that, with the exception of six scores of 89, there is a relative absence
of odd numbers. A complete analysis of the data requires that we at least notice these oddi-
ties and try to track down their source. It would be worthwhile to examine the scorin.g
process to see whether there is a reason why scores often tended to fall in bunches. It is
probably an artifact of how raw scores are converted to scale scores, but it is W(?rﬂ.l f:heck-
ing. {Actually, if you check the scoring manual, you will find that these peculiarities are
to be expected.) The fact that Tukey’s exploratory data analysis (EDA) procedures lead us
to notice these peculiarities is one of the great virtues of these methods. Finally, from the
boxplot, we can see that there are no serious outliers we need to worry about, which makes
our task noticeably easier.

Section 7.3 Testing a Sample Mean When ¢ Is Unknown—The One-Sample ¢ Test 17

From the data in Table 7.1, we can see that the mean PDI score for our LBW infants is
104.125. The norms for the PDI indicate that the population mean should be 100. Given the
data, a reasonable first question concerns whether the mean of our LBW sample departs
significantly from a population mean of 100. The 1 test is designed to answer this question.

From our formula for r and from the data, we have

X—pn X-p
= =
sy 2
Jn
_ 104125 — 100 _ 4125
- 12.584 ~1.682
V36
=245

This value will be a member of the ¢ distribution on 56 — | = 55 df if the null hypothe-
sis is true—that is, if the data were sampled from a population with p. = 100.

A t value of 2.45 in and of itself is not particularly meaningful uniess we can evaluate
it against the sampling distribution of r. For this purpose, the critical values of ¢ are pre-
sented in Appendix ¢. This table differs in form from the table of the normal distribution (z)
because instead of giving the area above and below each specific value of ¢, which would
require too much space, the table instead gives those values of ¢ that cut off particular crit-
ical areas—for example, the .05 and .01 levels of significance. We saw a similar situation
with respect to the x” distribution. Also, in contrast to z, a different 7 distribution is defined
for each possible number of degrees of freedom. We want to work at the two-tailed
.05 level, so we will want to know the value of ¢ that cuts off 5/2 = 2.5% in each tail. These
critical values are generally denoted tas2 OF, in this case, £ gp5. From the table of the ¢ distri-
bution in Appendix ¢, an abbreviated version of which is shown in Table 7.2, we find that
the critical value of tg5 (rounding to 50 df for purposes of the table) = 2.009. (This is
sometimes written as £435(50) = 2.009 to indicate the degrees of freedom.) Because the
obtained value of ¢, written 1oy, is greater than ¢ g5, we will reject Hy at a = .05, two-
tailed. that our sample came from a poputation of observations with w = 100. Instead, we
wilt conclude that our sample of LBW children differed from the general population of
children on the PDI. In fact, their mean was statistically significantly above the normative
population mean. This points out the advantage of using two-tailed tests because we would
have expected this group to score below the normative mean. (This might also suggest that
we check our scoring procedures to make sure we are not systematically overscoring our
subjects. Actually, however, a number of other studies using the PDI have reported simi-
larly high means.)

The Moon MHlusion

It will be useful to consider a second example, this one taken from a classic paper by
Kaufman and Rock (1962) on the moon illusion.* The moon illusion has fascinated psy-
chologists for years and refers to the fact that when we see the moon near the horizon, it
appears to be considerably larger than when we see it high in the sky. Kaufman and Rock
concluded that this illusion could be explained on the basis of the greater apparent

4 A more recent paper on this topic by Lloyd Kaufman and his son James Kaufman was published in the January
2000 issue of the Proceedings of the National Academy of Sciences.
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Table 7.2 Percentage points of the ¢ distribution

o 0{2 al2

L 7 i

0 t ~t 0 +t
One-tailed test Two-tailed test

Level of Significance for One-Tailed Test

25 .20 .15 .10 .05 .025 .01 .005 0005
Level of Significance forTwo-Tailed Test
df .50 .40 .30 .20 .10 .05 .02 01 .001
1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 63?.2;9
2 0'816 1.061 1.386 1.886 2.920 4.303 292? zzi? 1132.924
: 53 3.182 .5 . A
3 0.765 0.978 1.250 1.638 2.3 :
2.776 3.747 4.604 8.610
4 0.741 0.941 1.190 1.533 2.132
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 gggg
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.70; 5.408
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.49 5.041
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.781
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4~587
10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 58
30 0:683 0.854 1.055 1.310 1.697 2.042 2457 2.750 g 2;&?
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.496
50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 3.390
100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.291
%] 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 .

source: The entries in this table were computed by the author.

distance of the moon when it is at the horizon. As part of a very complete s'eries of exper-
iments, the authors initially sought to estimate the moon illusion by as%(mg subjects to
adjust a variable “moon” that appeared to be on the horizon to match the size of a stangard
“moon” that appeared at its zenith, or vice versa. (In these measure.ments, the'y used an
artifical moon created with special apparatus.) One of the first quesnon.s we mlght' ask is
whether there really is a moon illusion—that is, whether a larger semng. is required to
match a horizon moon or a zenith moon. The following data for 10 subjects are t.aken
from Kaufman and Rock’s paper and present the ratio of the diameter of Vthe variable
and standard moons. A ratio of 1.00 would indicate no illusion, whereas a ratio other thgn
1.00 would represent an illusion. (For example, a ratio of ]:50 would mean thi.lt the hori-
zon moon appeared to have a diameter 1.50 times the dl.ameler of the zen¥th moor.)
Evidence in support of an illusion would require that we reject Hp: i = 1.00 in favor of
Hy: . # 1.00.

Obtained ratio:  1.73  1.06 203 140 095
13 141 173 163 156
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For these data, n = 10, X = 1.463, and s = 0341. Atteston Hy:p = 1.00 is given by

X—-p X-p
t= =
Sy _S_
N
_1.463 — 1.000 _ 0463
- 0.341 T 0.108
J10
=4.29

From Appendix 1, with 10 - 1 = 9 df for a two-tailed test at a = .05, the critical value
of £025(9) = £2.262. The obtained value of t was 4.29. Because 4.29 > 2.262, we can
reject Hy at o = .05 and conclude that the true mean ratio under these conditions is not
equal to 1.00. In fact, it is greater than 1.00, which is what we would expect on the basis of
our experience. (It is always comforting to see science confirm what we have all known

since childhood, but in this case, the results also indicate that Kaufman and Rock’s experi-
mental apparatus performed as it should.)

Confidence Interval on I

point estimate

confidence limits

confidence
interval

Confidence intervals are a useful Wway to convey the meaning of an experimental tesult that
goes beyond the simple hypothesis test. The data on the moon illusion offer an excellent
example of a case in which we are particularly interested in estimating the true value of
p—in this case, the true ratio of the perceived size of the horizon moon to the perceived size
of the zenith moon. The sample mean (X), as you already know, is an unbiased estimate of
. When we have one specific estimate of a parameter, we call this a point estimate. There
are also interval estimates, which are attempls to set limits that have a high probability of
encompassing the true (population) value of the mean (the mean [u] of a whole population
of observations). What we want here are confidence limits on .. These limits enclose what
is called a confidence interval.’ [n Chapter 3, we saw how to set “probable limits” on an
observation. A similar line of reasoning will apply here, where we attempt to set confidence
limits on a parameter.

If we want to set limits that are likely to include . given the data at hand, what we really
want is to ask how large, or small, the true value of u could be without causing us to reject
Ho if we ran a t test on the obtained sample mean. In other words, if . were quite small (or
quite farge), we would have been unlikely to obtain the sample data. But for a whole range
of values for ., we would expect data like those we obtained. We want to calculate what
those values of . are.

An easy way to see what we are doing is to start with the formula for ¢ for the one-
sample case:

X- B X- T8
= =—
Jn

From the moon illusion data we know X = 1.463, s = 0.341, n = 10. We also know
that the critical two-tailed value for ¢ at o — .05 is 1025(9) = £2.262. We will substitute

t

1

3 We often speak of “‘confidence limits” and “confidence interval” as if they were synonymous. The pretty much

are, except that the limits are the end points of the interval. Don’t be confused when you see them used
interchangeably.
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these values in the formula for 1, but this time we will solve for the p. associated with this
value of 7.

X—p 1463 —p 1463 -p
= i_ +2262 = —m—l—— = 0.108
Vi /10

Rearranging to solve for ., we have
p = £2.262(0.108) + 1.463 = +£0.244 + 1.463
Using the +0.244 and —0.244 separately to obtain the upper and lower limits for ., we have

Poupper = +0.244 + 1.463 = 1.707
Wiower = —0.244 + 1.463 = 1.219

and thus, we can write the 95% confidence limits as 1.219 and 1.707 and the confidence
interval as

Clos = 1.219 < p < 1.707

Testing a null hypothesis about any value of . outside these limits would lead to rejec-
tion of Ho, and testing a null hypothesis about any value of . inside those limits would not
lead to rejection. The general expression is

- - s
Clia=Xttepsp) =X £ tu/Zﬁ
We have a 95% confidence interval because we used the two-tailed critical value of ¢ at

a = .05. For the 99% limits we would take fgi/2 = fo0s = £3.250. Then the 99% confi-

dence interval is

Clgs = X £ toa(sg) = 1.463 £3.250(0.108) = 1.12 < p < 1.814

We can now say that the probability is .95 that intervals calculated as we have calculated
the 95% interval earlier include the true mean ratio for the moon illusion. It is very tempt-
ing to say that the probability is .95 that the interval 1.219 to 1.707 includes the true mean
ratio for the moon illusion, and the probability is .99 that the interval 1.112 to 1.814 includes
. However, most statisticians would object to the statement of a confidence limit expressed
in this way. They would argue that before the experiment is run and the calculations are
made, an interval of the form,

X * toos(s3)

has a probability of .95 of encompassing p.. However, . is a fixed (though unknown) quan-
tity, and once the data are in, the specific interval 1.219 to 1.707 either includes the value
of w(p = 1.00) or it does not {p = .00). Put in slightly different form,

X £ toaslsy)

is a random variable (it will vary from one experiment to the next), but the specific interval
1.219 to 1.707 is not a random variable and therefore does not have a probability associated
with it. (Good [1999]) has made the point that we place our confidence in the method, rather
than in the interval. Many would maintain that it is perfectly reasonable to say that my con-
fidence is .95 that if you were to tell me the true value of ., it would be found to lie between
1.219 and 1.707. But there are many people just lying in wait for you to say that the proba-
bility is .95 that p lies between 1.219 and 1.707. When you do, they will pounce!

Note that neither the 95% nor the 99% confidence intervals that I computed includes the
value of 1.00, which represents no illusion. We already knew this for the 95% confidence
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Figure 7.6 Confidence intervals computed on 25 samples from
a population with p = 5

interval because we had rejected that null hypothesis when we ran our ¢ test at that signifi-
cance level.

I should add another way of looking at the interpretation of confidence limits. Statements
of the form p(1.219 < p < 1.707) = .95 are not interpreted in the usual way. (Actually,
I probably shouldn’t use p in that equation.) The parameter . is not a variable-—it does not
jump around from experiment to experiment. Rather, p. is a constant, and the interval is what
varies from experiment to experiment. Thus, we can think of the parameter as a stake and the
experimenter, in computing confidence limits, as tossing rings at it. Ninety-five percent of the
time, a ring of specified width will encircle the parameter; 5% of the time, it will miss. A con-
fidence statement is a statement of the probability that the ring has been on target; it is not a
statement of the probability that the target (parameter) landed in the ring.

A graphic demonstration of confidence limits is shown in Figure 7.6. To generate this
figure, I drew 25 samples of n = 4 from a population with a mean () of 5. For every sam-
ple, a 95% confidence limit on p was calculated and plotted. For example, the limits pro-
duced from the first sample (the top horizontal line) were approximately 4.46 and 5.72,
whereas those for the second sample were 4.83 and 5.80. In this case, we know that the
value of . equals 5, so [ have drawn a vertical line at that point. Notice that the limits for
samples 12 and 14 do not include p. = 5. We would expect that 95% confidence limits
would encompass @ 95 times out of 100. Therefore, 2 misses out of 25 seems reasonable.
Notice also that the confidence intervals vary in width. This variability is because the width
of an interval is a function of the standard deviation of the sample, and some samples have
larger standard deviations than others.

Using Minitab to Run One-Sample t Tests

p level

With a large data set, it is often convenient to use a program such as Minitab to compute
t values. Exhibit 7.1 shows how Minitab can be used to obtain a one-sample ¢ test and con-
fidence limits for the moon-illusion data. To get both the ¢ test and the confidence limits,
you have to specify separate analyses by clicking on different radio buttons. These buttons
are shown in the first part of Exhibit 7.1. Notice that Minitab’s results agree, within round-
ing error, with those we obtained by hand. Notice also that Minitab computes the exact
probability of a Type I error (the p level), rather than comparing ¢ with a tabled value.
Thus, whereas we concluded that the probability of a Type I error was less than .05,
Minitab reveals that the actual probability is .0020. Most computer programs operate in
this way.
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1-Sample t

TT Illusion Variables:

Illusion

* ’—go nfidence interval |
Cleve ‘50

 Test vmea'hﬁ

&lteh}étivé: e :

T Confidence intervals

Variable N Mean StDev SE Mean 95.0% CI
Tllusion 10 1.463 0.341 0.108 (1.219, 1.707)

T-Test of the Mean
Test of mu = 1.000 vs mu not = 1.000

Variable N Mean StDev SE Mean T P
Tlusion 10 1.463 0.341 0.108 430 0.0020

Exhibit 7.1 Minitab for one-sample s-test and confidence limits

7.4 Hypothesis Tests Applied to Means—Two
Matched Samples

matched
samples

repeated
measures

related samples

matched-sample
t test

In Section 7.3, we considered the situation in which we had one sample mean (X) and
wanted to test to see whether it was reasonable to believe that such a sample mean would
have occurred if we had been sampling from a population with some specified mean
(often denoted o). Another way of phrasing this is to say that we were testing to deter-
mine whether the mean of the population from which we sampled (call it p, ) was equal
to some particular value given by the null hypothesis (pg). In this section, we will con-
sider the case in which we have two matched samples (often called repeated measures,
when the same subjects respond on two occasions, or related samples, correlated sam-
ples, paired samples, or dependent samples) and want to perform a test on the difference
between their two means. In this case, we want what is sometimes called the matched-
sample ¢ test.
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Table 7.3 Data from Everitt on weight gain
10 1 2 3 4 5 6 7 8 9 10

Before 838 833 860 825 8.7 796 769 942 734 805
After 952 943 915 919 1003 767 768 101.6 949 752

Diff 114 11.0 55 94 136 -29 -01 74 215 -53

1D moo12 13 14 15 16 17 Mean St. Dev

Before 81.6 821 77.6 835 899 860 873 83.23 5.02
After 778 955 907 925 938 917 980 90.49 8.48

Diff -38 134 131 90 39 57 107 726  1.16
— 110
b
]
= 100+
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g
< 804
£
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Z 10
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Weight before treatment (in pounds)

Figure 7.7 Relationship of weight before and after family therapy, for a group
of 17 anorexic girls

Treatment of Anorexia

Everitt, in Hand, Daly, Lunn, McConway, and Ostrowski (1994), reported on family therapy
as a treatment for anorexia. There were 17 girls in this experiment, and they were weighed be-
fore and after treatment. The weights of the girls, in pounds,® are given in Table 7.3. The row
of difference scores was obtained by subtracting the Before score from the After score, so that
a negative difference represents weight loss, and a positive difference represents a gain.

One of the first things we should probably do, although it takes us away from ¢ tests for
a moment, is to plot the relationship between Before Treatment and After Treatment
weights, looking to see if there is, in fact, a relationship, and how linear that relationship is.
Such a plot is given in Figure 7.7. Notice that the relationship is basically linear, with a slope
quite near 1.0. Such a slope suggests that how much the girl weighed at the beginning of

© Everitt reported that these weights were in kilograms, but if so he has a collection of anorexic young girls whose
mean weight is about 185 pounds, and that just doesn’t sound ble. The ple is pletely unaffected
by the units in which we record weight.
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therapy did not seriously influence how much weight she gained or lost by the end of ther-
apy. (We will discuss regression lines and slopes further in Chapter 9.)

The primary question we want is ask is whether subjects gained weight as a function of
the therapy sessions. We have an experimental problem here because it is possible that
weight gain resulted merely from the passage of time, and that therapy had nothing to do
with it. However, I know from other data in that experiment that a group that did not receive
therapy did not gain weight over the same period, which strongly suggests that the simple
passage of time was not an important variable. If you were to calculate the weight of these
girls before and after therapy, the means would be 83.23 and 90.49 Ibs, respectively, which
translates to a gain of a little over 7 pounds. However, we still need to test to see whether
this difference is likely to represent a true difference in population means, or a chance dif-
ference. By this, I mean that we need to test the null hypothesis that the mean in rhe popu-
lation of Before scores is equal to the mean in the population of After scores. In other
words, we are testing Ho: pa = pg.

Difference Scores

Although it would seem obvious to view the data as representing two samples of scores, one
set obtained before the therapy program and one after, it is also possible, and very profitable,
to transform the data into one set of scores—the set of differences between X; and X for
difference scores each subject. These differences are called difference scores, or gain scores, and are shown
in the row labeled “Diff” in Table 7.3. They represent the degree of weight gain between one
measurement session and the next—presumably as a result of our intervention. If the therapy
program had no effect (i.e., if Hy is true), the average weight would not change from session
to session. By chance, some participants would happen to have a higher weight on X5 than
on X |, and some would have a lower weight, but on the average there would be no difference.
If we now think of our data as being the set of difference scores, the null hypothesis
becomes the hypothesis that the mean of a population of difference scores (denoted p)
equals 0. Because it can be shown that . = ) — a, wecan write Ho: pp = py — pr = 0.
But now we can see that we are testing a hypothesis using one sample of data (the sample of
difference scores), and we already know how to do that.

gain scores

The t Statistic

We are now at precisely the same place we were in the previous section when we had a sam-
ple of data and a null hypothesis (p. = 0). The only difference is that in this case the data are
difference scores, and the mean and the standard deviation are based on the differences.
Recall that ¢ was defined as the difference between a sample mean and a population mean,
divided by the standard error of the mean. Then we have

_D-0_D-0

t

_ s
S5 L
VN
where and D and s, are the mean and the standard deviation of the difference scores and N
is the number of difference scores (i.e., the number of pairs, not the number of raw scores).

From Table 7.3, we see that the mean difference score was 7.26, and the standard deviation
of the differences was 7.16. For our data

D-0_D-0 726-0 726
S5 - o 7.16 —m
WU

t= = =4.18
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Degrees of Freedom

The degrees of freedom for the matched-sample case are exactly the same as they were for the
one-sample case. Because we are working with the difference scores, N will be equal to the
number of differences (or the number of pairs of observations, or the number of independent
observations—all of which amount to the same thing). Because the variance of these differ-
ence scores (s3) is used as an estimate of the variance of a population of difference scores
(o3) and because this sample variance is obtained using the sample mean (D), we will lose
one df to the mean and have N — 1 df. In other words, df = number of pairs minus 1.

We have 17 difference scores in this example, so we will have 16 degrees of freedom.
From Appendix ¢, we find that for a two-tailed test at the .05 level of significance, 145(16) =
12.12. Our obtained value of #(4.18) exceeds 2.12, so we will reject Hy and conclude that
the difference scores were not sampled from a population of difference scores where
wp = 0. In practical terms, this means that the subjects weighed significantly more after the
intervention program than before it. Although we would like to think that this means that the
program was successful, keep in mind the possibility that this could just be normal growth.
The fact remains, however, that for whatever reason, the weights were sufficiently higher on
the second occasion to allow us to reject Hy: up = oy — 2 = 0.

The Moon illusion Revisited

As a second example, we will return to the work by Kaufman and Rock (1962) on the moon
illusion. An important hypothesis about the source of the moon illusion was put forth by
Holway and Boring (1940), who suggested that the illusion was because the observer looked
straight at the moon with eyes level when it was on the horizon, whereas when the moon was
at its zenith, the observer had to elevate his eyes as well as his head. Holway and Boring pro-
posed that this difference in the elevation of the eyes was the cause of the illusion. Kaufman
and Rock thought differently. To test Holway and Boring’s hypothesis, Kaufman and Rock
devised an apparatus that allowed them to present two artificial moons (one at the horizon and
one at the zenith) and to control whether the subjects elevated their eyes to see the zenith
moon. In one case, the subject was forced to put his head in such a position as to be able to see
the zenith moon with eyes level. In the other case, the subject was forced to see the zenith
moon with eyes raised. (The horizon moon was always viewed with eyes level.) In both cases,
the dependent variable was the ratio of the perceived size of the horizon moon to the perceived
size of the zenith moon (a ratio of 1.00 would represent no illusion). If Holway and Boring
were correct, there should have been a greater illusion (larger ratio) in the eyes-elevated con-
dition than in the eyes-level condition, although the moon was always perceived to be in the
same place, the zenith. The actual data for this experiment are given in Table 7.4.

In this example, we want to test the nu{l hypothesis that the means are equal under the
two viewing conditions. Because we are dealing with related observations (each subject
served under both conditions), we will work with the difference scores and test Ho: p.p = 0.
Using a two-tailed test at o« = .03, the alternative hypothesis is H,: pp # 0.

From the formula for a ¢ test on related samples, we have

D-0 D-0
= =
Jn
0019-0 0019

T 70137 T 0.043
J10
= 0.44

t

S5
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Table 7.4 Magunitude of the moon illusion when zenith moon is
viewed with eyes level and with eyes elevated

Observer Eyes Elevated Eyes Level Difference (D)

1 1.65 1.73 -0.08
2 1.00 1.06 —0.06
3 2.03 2.03 0.00
4 1.25 1.40 —0.15
5 1.05 0.95 0.10
6 1.02 1.13 ~0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 ~0.07
10 1.73 1.56 0.17

D =0019

sp =0.137

5 = 0.043

From Appendix 1, we find that £ 625(9) = £2.262. Because for, = 0.44 is less than 2.262,
we will fail to reject Hy and will decide that we have no evidence to suggest that the illusion
is affected by the elevation of the eyes.” (These data also include a second test of Holway
and Boring's hypothesis because they would have predicted that there would not be an illu-
sion if subjects viewed the zenith moon with eyes level. On the contrary, the data reveal a
considerable illusion under this condition. A test of the significance of the illusion with eyes
level can be obtained by the methods discussed in the Section 7.3, and the illusion is in fact
statistically significant.)

Confidence Limits on Matched Samples

We can calculate confidence limits on matched samples in the same way we did for the one-
sample case because in matched samples the data come down to a single column of differ-
ence scores. Returning to Everitt’s data on anorexia, we have

D-0
=

5B
and thus
_ _ sp
Clgs = Dt tosp(sy) =D t.OZSﬁ

Clys = 7.26 £ 2.12(1.74)
Clgs = 7.26 +3.69
=357 <p <1095

7 A glance at Appendix ¢ will reveal that a 7 less than 1.96 (the critical value for z) will never be significant at
« = .05, regardless of the number of degrees of freedom. Moreover, unless you have at least 50 degrees of
treedom, ¢ values less than 2.00 will not be significant, often making it unnecessary for you even to bother
looking at the table of r.

Effect Size

Cohen’s d
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Notice that this confidence interval does not include wp = 0.0, which is consistent with the
fact that we rejected the null hypothesis.

In Chapter 6, we looked at effect size measures as a way of understanding the magnitude of
the effect that we see in an experiment—rather than simply the statistical significance.
When we are looking at the difference between two related measures we can, and should,
also compute effect sizes. In this case, there is a slight complication as we will see shortly.

d-Family of Measures

A number of different effect sizes measures are often recommended, and for a complete
coverage of this topic I suggest the reference by Kline (2004). As I did in Chapter 6, I am
going to distinguish between measures based on differences between groups (the d-family)
and measures based on correlations between variables (the r-family). However, in this chap-
ter I am not going to discuss the r-family measures, partly because I find them less infor-
mative and partly because they are more easily and logically discussed in Chapter 11 when
we come to the analysis of variance.

There is considerable confusion in the naming of measures, and for clarification on that
score I refer the reader to Kline (2004). Here I will use the more common approach, which
Kline points out is not quite technically correct, and refer to my measure as Cohen’s d.
Measures proposed by Hedges and by Glass are very similar and are often named almost
interchangeably.

The data on treatment of anorexia offer a good example of a situation in which it is rel-
atively easy to report on the difference in ways that people will understand. All of us step
onto a scale occasionally, and we have some general idea what it means to gain or lose 5 or
10 pounds. So for Everitt’s data, we could simply report that the difference was significant
(t = 4.18, p < .05) and that girls gained an average of 7.26 pounds. For girls who started
out weighing, on average, 83 pounds, that is a substantial gain. In fact, it might make sense
to convert pounds gained to a percentage and say that the girls increased their weight by
7.26/83.23 = 9%.

An alternative measure would be to report the gain in standard deviation units. This idea
goes back to Cohen, who originally formulated the problem in terms of a statistic (d), where

Ki — H2

d="—""
o
In this equation, the numerator is the difference between two population means, and the de-
nominator is the standard deviation of either population. In our case, we can modify that
slightly to let the numerator be the mean gain (afer — [LBefore)» and let the denominator be
the population standard deviation of the pretreatment weights. To put this in terms of statis-
tics, rather than parameters, we can substitute sample means and standard deviations instead
of population values. This leaves us with

X -X, 90.49-83.23 726
sx, 5.02 T 5.02

d= =145
I have put a “hat” over the d to indicate that we are calculating an estimate of d, and [
have put the standard deviation of the pretreatment scores in the denominator. Qur estimate
tells us that, on average, the girls involved in family therapy gained nearly one and a haif
standard deviations of pretreatment weights over the course of therapy.
In this particular example, I find it easier to deal with the mean weight gain, rather than
d, simply because I know something meaningful about weight. However, if this experiment
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had measured the girls’ self-esteem, rather than weight, I would not know what to think if
you said that they gained 7.26 self-esteem points because that scale means nothing to me.
I would be impressed, however, if you said that they gained nearly one and a half standard
deviation units in self-esteem.

The issue is not quite as simple as I have made it out to be because there are alternative
ways of approaching the problem. One way would be to use the average of the pre- and post-
score standard deviations, rather than just the standard deviation of the pre-scores. However,
when we are measuring gain, it makes sense to me to measure it in the metric of the origi-
nal weights. You may come across situations where you would think that it makes more
sense to use the average standard deviation. In addition, it would be perfectly possible to use
the standard deviation of the difference scores in the denominator for d. Kline (2004) dis-
cusses this approach and concludes, “If our natural reference for thinking about scores on
(some) measure is their original standard deviation, it makes most sense to report standard-
ized mean change (using that standard deviation).” However, the important point here is to
keep in mind that such decisions often depend on substantive considerations in the particu-
lar research field, and no one measure is uniformly best.

Confidence Limits on d

Just as we were able to establish confidence limits on our estimate of the population mean
(), we can establish confidence limits on d. However, it is not a simple process to do so,
and I refer the reader to Kline (2004) or Cumming and Finch (2001). The latter provide a
very inexpensive computer program to make these calculations.

Matched Samples

In many, but certainly not all, situations in which we will use the matched-sample ¢ test, we
will have two sets of data from the same subjects. For example, we might ask each of
20 people to rate their level of anxiety before and after donating blood. Or we might record
ratings of level of disability made using two different scoring systems for each of 20 dis-
abled individuals in an attempt to see whether one scoring system leads to generally lower
assessments than does the other. In both examples, we would have 20 sets of numbers, two
numbers for each person, and would expect these two sets of numbers to be related (or, in
the terminology we will later adopt, to be correlated). Consider the blood-donation exam-
ple. People differ widely in level of anxiety. Some seem to be anxious all of the time no mat-
ter what happens, and others just take things as they come and do not worry about anything.
Thus, there should be a relationship between an individual’s anxiety level before donating
blood and her anxiety level after donating blood. In other words, if we know what a person’s
anxiety score was before donation, we can make a reasonable guess what it was after dona-
tion. Similarly, some people are severely disabled whereas others are only mildly disabled.
If we know that a particular person received a high assessment using one scoring system, it
is likely that he also received a relatively high assessment using the other system. The rela-
tionship between data sets does not have to be perfect—it probably never will be. The fact
that we can make better-than-chance predictions is sufficient to classify two sets of data as
matched or related.

In the two preceding examples, I chose situations in which each person in the study con-
tributed two scores. Although this is the most common way of obtaining related samples, it is
not the only way. For example, a study of marital relationships might involve asking husbands
and wives to rate their satisfaction with their marriage, with the goal of testing to see whether
wives are, on average, more or less satisfied than husbands. (You will see an example of just
such a study in the exercises for this chapter.) Here, each individual would contribute only
one score, but the couple as a unit would contribute a pair of scores. It is reasonable to assume
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that if the husband is very dissatisfied with the marriage, his wife is probably also dissatisfied,
and vice versa, thus causing their scores to be related.

Many experimental designs involve related samples. They all have one thing in com-
mon, and that is that knowing one member of a pair of scores tells you something—maybe
not much, but something—about the other member. Whenever this is the case, we say that
the samples are matched.

Missing Data

Ideally, with matched samples we have a score on each variable for each case or pair of
cases. If a subject participates in the pretest, she also participates in the posttest. If one
member of a couple provides data, so does the other member. When we are finished col-
lecting data, we have a complete set of paired scores. Unfortunately, experiments do not
usually work out as cleanly as we would like,

Suppose, for example, that we want to compare scores on a checklist of children’s be-
havior problems completed by mothers and fathers, with the expectation that mothers are
more sensitive to their children’s problems than are fathers and, thus, will produce higher
scores. Most of the time both parents will complete the form. But there might be 10 cases
where the mother sent in her form but the father did not, and 5 cases where we have a form
from the father but not from the mother. The normal procedure in this situation is to elimi-
nate the 15 pairs of parents where we do not have complete data, and then run a matched-
sample ¢ test on the data that remain. This is the way almost everyone would analyze the
data. There is an alternative, however, that allows us to use all the data if we are willing to
assume that data are missing at random and not systematically. (By this, I mean that we have
to assume that we are not more likely to be missing Dad’s data when the child is reported by
Mom to have very few problems, nor are we less likely to be missing Dad’s data for a very
behaviorally disordered child.)

Bohj (1978) proposed an ingenious test in which you basically compute a matched-
sampie t for those cases in which both scores are present, then compute an additional
independent group ¢ (to be discussed next) between the scores of mothers without fathers
and fathers without mothers, and finally combine the two r statistics. This combined 7 can
then be evaluated against special tables. These tables are available in Wilcox (1986), and
approximations to critical values of this combined statistic are discussed briefly in Wilcox
(1987a). This test is sufficiently awkward that you would not use it simply because you are
missing two or three observations. But it can be extremely useful when many pieces of data
are missing. For a more extensive discussion, see Wilcox (1987b).

Using Computer Software for t Tests on Matched Samples

The use of almost any computer software to analyze matched samples can involve nothing
more than using a compute command to create a variable that is the difference between the
two scores we are comparing. We then run a simple one-sample ¢ test to test the null
hypothesis that those difference scores came from a population with a mean of 0. Alterna-
tively, some software, such as SPSS, allows you to specify that you want a r on two related
samples, and then to specify the two variables that represent those sarples. This is very
similar to what we have already done, so I will not repeat that here.

Writing Up the Results of a Dependent t

Suppose that we want to write up the results of Everitt’s study of family therapy for
anorexia. We would want to be sure to include the relevant sample statistics (X, s>, and N),
as well as the test of statistical significance. But we would also want to include confidence
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limits on the mean weight gain following therapy, and our effect size estimate (d). We might
write,

Everitt ran a study on the effect of family therapy on weight gain in girls suffering from
anorexia. He collected weight data on 17 girls before therapy, provided family therapy
to the girls and their families, and then collected data on the girls’ weight at the end of
therapy.

The mean weight gain for the N = 17 girls was 7.26 pounds, with a standard devia-
tion of 7.16. A two-tailed r-test on weight gain was statistically significant (¢(16) = 4.18,
p < .05), revealing that on average the girls did gain weight over the course of therapy. A
95% confidence interval on mean weight gain was 3.57-10.95, which is a notable weight
gain even at the low end of the interval. Cohen’s d = 1.45, indicating that the girls’ weight
gain was nearly 1.5 standard deviations relative to their original pretest weights. It would
appear that family therapy has made an important contribution to the treatment of anorexia
in this experiment.

7.5 Hypothesis Tests Applied to Means—Two
Independent Samples

One of the most common uses of the 1 test involves testing the difference between the means
of two independent groups. We might want to compare the mean number of trials needed to
reach criterion on a simple visual discrimination task for two groups of rats—one raised
under normal conditions and one raised under conditions of sensory deprivation. Ot we
might want to compare the mean levels of retention of a group of college students asked to
recall active declarative sentences and a group asked to recall passive negative sentences.
Or, we might place subjects in a situation in which another person needed help; we could
compare the latency of helping behavior when subjects were tested alone and when they
were tested in groups.

In conducting any experiment with two independent groups, we would most likely find
that the two sample means differed by some amount. The important question, however, is
whether this difference is sufficiently large to justify the conclusion that the two samples
were drawn from different populations—that is, using the example of helping behavior, is the
mean of the population of latencies from singly tested subjects different from the mean of the
population of latencies from group-tested subjects? Before we consider a specific example,
however, we will need to examine the sampling distribution of differences between means
and the ¢ test that results from it.

Distribution of Differences Between Means

sampling
distribution of
differences
between means

When we are interested in testing for a difference between the mean of one population (j1,)
and the mean of a second population (i), we will be testing a null hypothesis of the form
Hp: 1y — pa = 0 or, equivalently, |, = p2. Because the test of this null hypothesis invoives
the diffcrence between independent sample means, it is important that we digress for a mo-
ment and examine the sampling distribution of differences between means. Suppose that
we have two populations labeled X| and X, with means ., and ., and variances o} and a?.
We now draw pairs of samples of size n; from population X, and of size n; from population
X>, and record the means and the difference between the means for each pair of samples.
Because we are sampling independently from each population, the sample means will be
independent. (Means are paired only in the trivial and presumably irrelevant sense of being
drawn at the same time.) The results of an infinite number of replications of this procedure

variance
sum law
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Figure 7.8 Schematic set of means and mean differences
when sampling from two populations

are presented schematically in Figure 7.8. In the lower portion of this figure, the first two
columns represent the sampling distributions of X, and X», and the third column represents
the sampling distribution of mean differences (X, — X»). We are most interested in this third
column because we are concerned with testing differences between means. The mean of this
distribution can be shown to equal p; — ... The variance of this distribution of differences
is given by what is commonly called the variance sum law, a limited form of which states

The variance of a sum or difference of two independent variables is equal to the sum of
their variances.?

We know from the central limit theorem that the variance of the distribution of X, is
U,z/nl and the variance of the distribution of X, is 0'22/)13 . Because the variables (sample
means) are independent, the variance of the difference of these two variables is the sum of
their variances. Thus

2 2
2 3 1 oy |, 03

R A

Having found the mean and the variance of a set of differences between means, we
know most of what we need to know. The general form of the sampling distribution of mean
differences is presented in Figure 7.9.

The final point to be made about this distribution concerns its shape. An important
theorem in statistics states that the sum or difference of two independent normally distrib-
uted variables is itself normally distributed. Because Figure 7.9 represents the difference
between two sampling distributions of the mean, and because we know that the sampling
distribution of means is at least approximately normal for reasonable sample sizes, the dis-
tribution in Figure 7.9 must itself be at least approximately normal.

8 The complete form of the law omits lhe restncllon lhm the variables must be independent and states that the
variance of their sum or difference is “x ixy = crl + 17, + 2pa) 62 where the notation = is interpreted as plus
when we are speaking of their sum and as minus when we are speaking of their difference. The term p (rho) in
this equation is the correlation between the two variables (to be discussed in Chapter 9) and is equal to zero when
the variables are independent. (The fact that p # O when the variables are not independent was what forced us to
treat the related sample case separately.)
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The t Statistic

standard error
of differences
between means

! I

%, - %

Figure 7.9 Sampling distribution of mean differences

Given the information we now have about the sampling distribution of mean differences, we
can proceed to develop the appropriate test procedure. Assume for the moment that knowl-
edge of the population variances (¢;*) is not a problem. We have earlier defined z as a statis-
tic (a point on the distribution) minus the mean of the distribution, divided by the standard
error of the distribution. Our statistic in the present case is (X; — X,), the observed differ-
ence between the sample means. The mean of the sampling distribution is (p, — p), and,
as we saw, the standard error of differences between means” is

2 2
of  of
2 2 ! 2
o= - = [fo= gz = | —+ —=
Xi-x: %t %, n +na

Thus, we can write

X =X — (i —pa)

T%,-%,
_ X~ X2) — (p1 — pa)
a3 2
G, %
np na

The critical value for a = .05 is z = £1.96 (two-tailed), as it was for the one-sample tests
discussed earlier.

The preceding formula is not particularly useful except for the purpose of showing the
origin of the appropriate 1 test because we rarely know the necessary population variances.
(Such knowledge is so rare that it is not even worth imagining cases in which we would have
it, although a few do exist.) We can circumvent this problem just as we did in the one-
sample case, by using the sample variances as estimates of the population variances. This,
for the same reasons discussed earlier for the one-sample ¢, means that the result will be dis-
tributed as ¢ rather than z.

po K= X) — (i — o)
SX %2

_ (X —X2) — (p1 — pa)

? Remember that the standard deviation of any sampling distribution is cailed the standard error of that
distribution.
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The null hypothesis is generally the hypothesis that ., — > = 0, so we will drop that term
from the equation and write

o Ei-Xy) XXy

5%,-%x 52

Pooling Variances

weighted
average

pooled variance
estimate

Although the equation for 7 that we have just developed is appropriate when the sample sizes
are equal, it requires some modification when the sample sizes are unequal. This modifica-
tion is designed to improve the estimate of the population variance. One of the assumptions
required in the use of ¢ for two independent samples is that o] = o7 (i.e., the samples come
from populations with equal variances, regardless of the truth or falsity of Hp). The assump-
tion is required regardless of whether n, and n, are equal. Such an assumption is often rea-
sonable. We frequently begin an experiment with two groups of subjects who are equivalent
and then do something to one (or both) group(s) that will raise or lower the scores by an
amount equal to the effect of the experimental treatment. In such a case, it often makes sense
to assume that the variances will remain unaffected. (Recall that adding or subtracting a
constant—here, the treatment effect—to or from a set of scores has no effect on its variance.)
Because the population variances are assumed to be equal, this common variance can be
represented by the symbol o2, without a subscript.

In our data, we have two estimates of o, namely s7 and s3. It seems appropriate to
obtain some sort of an average of s? and s3 on the grounds that this average should be a
better estimate of o2 than either of the two separate estimates. We do not want to take the
simple arithmetic mean, however, because doing so would give equal weight to the two
estimates, even if one were based on considerably more observations. What we want is a
weighted average, in which the sample variances are weighted by their degrees of freedom
{n; — 1). If we call this new estimate 57 then
s (i =Dsi+(n— s}

P ny+ny—2
The numerator represents the sum of the variances, each weighted by their degrees of free-
dom, and the denominator represents the sum of the weights or, equivalently, the degrees of
freedom for 52.

The weighted average of the two sample variances is usually referred to as a pooled
variance estimate (a rather inelegant name, but reasonably descriptive). Having defined the
pooled estimate (sf,), we can now write

_ X, - X) - (X, - %) - (X — X2)

R-% 52 1 1
=R D
1 ny 1 2

Notice that both this formula for ¢ and the one we have just been using involve dividing
the difference between the sample means by an estimate of the standard error of the differ-
ence between means. The only difference concerns how this standard error is estimated.
When the sample sizes are equal, it makes absolutely no difference whether or not you pool
variances; the answer will be the same. When the sample sizes are unequal, however, pool-
ing can make quite a difference.

1
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Degrees of Freedom

Two sample variances (s} and s3) have gone into calculating #. Each of these variances is
based on squared deviations about their corresponding sample means, and therefore, each
sample variance has n; — 1 df. Across the two samples, therefore, we will have (7, — 1) +
(ny — 1) = (n, + ny —2) df. Thus, the r for two independent samples will be based on
ny + ny — 2 degrees of freedom.

Homophobia and Sexual Arousal

Adams, Wright, & Lohr (1996) were interested in some basic psychoanalytic theories that
homophobia may be unconsciously related to the anxiety of being or becoming homo-
sexual. They administered the Index of Homophobia to 64 heterosexual males and classed
them as homophobic or nonhomophobic on the basis of their score. The researchers then
exposed homophobic and nonhomophobic heterosexual men to videotapes of sexually
explicit erotic stimuli portraying heterosexual and homosexual behavior, and recorded their
level of sexual arousal. Adams et al. reasoned that if homophobia were unconsciously
related to anxiety about one’s own sexuality, homophobic individuals would show greater
arousal to the homosexual videos than would nonhomophobic individuals.

In this example, we will examine only the data from the homosexual video. (There were
no group differences for the heterosexual and lesbian videos.) The data in Table 7.5 were
created to have the same means and pooled variance as the data that Adams et al. collected,
so our conclusions will be the same as theirs.! The dependent variable is the degree of
arousal at the end of the 4-minute video, with larger values indicating greater arousal.

Table 7.5 Data from Adams et al. on level of sexual arousal in homophobic and
nonhomophobic heterosexual males

Homophobic Nonhomophobic

39.1 380 149 207 195 322 240 170 358 180 -1.7 111
11.0 207 264 357 264 288 101 161 -07 141 259 230
334 137 461 137 230 207 200 141 -1.7 190 200 309
195 114 241 172 380 103 309 220 62 279 141 338
357 415 184 368 541 114 269 52 131 190 -155

87 230 143 353 63

Mean 24.00 Mean 16.50
Variance 148.87 Variance 139.16
n 35 n 29

Before we consider any statistical test, and ideally even before the data are collected, we
must specify several features of the test. First, we must specify the null and alternative
hypotheses:

Hy gy = pa

Hipg # w2

The alternative hypothesis is bidirectional (we will reject Hy if p; < py or if py > pa,
and thus we will use a two-tailed test. For the sake of consistency with other examples in this

book, we will let o = .05, It is important to keep in mind, however, that there is nothing par-
ticularly sacred about any of these decisions. (Think about how Jones and Tukey [2000]

10 actually added 12 points to each mean, largely to avoid many negative scores, but it doesn't change the results
or the calculations in the slightest.
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would have written this paragraph. Where would they have differed from what is here, and
why might their approach be clearer?)
Given the null hypothesis as stated, we can now calculate 1:

X -X2

5% _%. 2 2

Xi-X2 K { 1
r + I .Y;‘; (___ + —
ny N2 m n

Because we are testing Ho, i — p2 =0, the pu; — i term has been dropped from the equa-
tion. We should pool our sample variances because they are so similar that we do not have
to worry about heterogeneity of variance. Doing so we obtain

» (= Dsi + (n2 — 1)s3
= n o+ —2
_ 34(148.87) + 28(139.16) — 144.48
35+29-2

Notice that the pooled variance is slightly closer in value to s? than to s because of the
greater weight given s in the formula. Then

X - X, (24.00 — 16.50) 7.50

= = = =
R 14448 14448 /911
I N e o
. 35 29

s

248

For this example, we have n; — | = 34 df for the homophobic group and n> — 1 = 28 df
for the nonhomophobic group, making a total of 71y — 1 + 12 — 1 = 62 df. From the sam-
pling distribution of ¢ in Appendix 1, .025(62) = £2.003 (with linear interpolation). Because
the value of f4 far exceeds 42, we will reject Ho (at a = .05) and conclude that there is a
difference between the means of the populations from which our observations were drawn.
In other words, we will conclude (statistically) that i, # p» and (practically) that g, > pa.
In terms of the experimental variables, homophobic subjects show greater arousal to a ho-
mosexual video than do nonhomophobic subjects. (How would the conclusions of Jones
and Tukey (2000) compare with the one given here?)

Confidence Limits on pq — p2

In addition to testing a null hypothesis about population means (i.e., testing Fo: gy —
s = 0), it is useful to set confidence limits and effect sizes on the difference between .,
and p». The logic for setting confidence limits is exactly the same as it was for the one-
sample case. The calculations are also exactly the same except that we use the difference
between the means and the standard error of differences between means in place of the mean
and the standard ertor of the mean. Thus, for the 95% confidence limits on 1, — p,, we have

Clos = (X1 = X2) £ 10557, %,
For the homophobia study, we have
- = 14448 144.48
Clos'= (X1 — X3) £ 10553, 5, = (24.00 — 16.5) £2.00 T T
=7.50+2.00(3.018) = 7.5+ 6.04
146 < (uy — p2) < 13.54
The probability is .95 that an interval computed as we computed this interval encloses the

difference in arousal to homosexual videos between homophobic and nonhomophobic partic-
ipants. Although the interval is wide, it does not include 0. This is consistent with our rejection
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Effect Size

of the null hypothesis and allows us to state that homophobic individuals are, in fact, more
sexually aroused by homosexual videos than are nonhomophobic individuals. However, 1
think that we would be remiss if we simply ignored the width of this interval. Although the dif-
ference between groups is statistically significant, there is still considerable uncertainty about
how large the difference is. In addition, keep in mind that the dependent variable is the “degree
of sexual arousal” on an arbitrary scale. Even if your confidence interval were quite narrow, it
is difficult to know what to make of the result in absolute terms. To say that the groups differed
by 7.5 units in arousal is not particularly informative. Is that a big difference or a little differ-
ence? We have no real way to know because the units (mm of penile circumference) are not
something that most of us have an intuitive feel for. But when we standardize the measure, as
we will in the next section, it is often more informative, as I think it is here.

The confidence interval that we just calculated has shown us that we still have considerable
uncertainty about the difference in sexual arousal between groups, even though our statisti-
cally significant difference tells us that the homophobic group actuaily shows more arousal
than the nonhomophobic group does. Again, we come to the issue of finding ways to pre-
sent information to our readers that conveys the magnitude of the difference between our
groups. We will use an effect size measure based on Cohen’s d. It is very similar to the one
that we used in the case of two dependent samples, where we divided the difference between
the means by a standard deviation. We will again call this statistic (¢/). In this case, however,
our standard deviation will be the estimated standard deviation of either population. More
specifically, we will pool the two variances and take the square root of the result, and that
will give us our best estimate of the standard deviation of the populations from which the
numbers were drawn.!! (If we had noticeably different variances, we would most likely use
the standard deviation of one sample and note to the reader that this is what we had done.)
For our data on homophobia, we have

X, —X: 2400~ 16.50

d= =
5 12.02

= 0.62

This result expresses the difference between the two groups in standard deviation units
and tells us that the mean arousal for homophobic participants was nearly 2/3 of a standard
deviation higher than the arousal of nonhomophobic participants. That strikes me as a big
difference. (Using the software by Cumming and Finch [2001], we find that the confidence
intervals on d are 0.1155 and 1.125, which is also rather wide. At the same time, even the
lower limit on the confidence interval is meaningtully large.)

A word of caution: In the example of homophobia. the units of measurement were
largely arbitrary, and a 7.5 difference had no intrinsic meaning to us. Thus, it made more
sense to express it in terms of standard deviations because we have at least some under-
standing of what that means. However, there are many cases wherein the original units are
meaningful, and in those cases it may not make much sense to standardize the measure (i.e.,
report it in standard deviation units). We might prefer to specify the difference between
means, or the ratio of means, or some similar statistic. The earlier example of the moon
illusion is a case in point. There, it is far more meaningful to speak of the horizon moon
appearing approximately half-again as large as the zenith moon, and [ see no advantage, and
some obfuscation, in converting to standardized units. The important goal is to give the
reader an appreciation of the size of a difference, and you should choose that measure that

' Hedges (1982) was the one who first recommended stating this formula in terms of statistics with the pooled
i of the dard deviation ituted for the population value. It is sometimes referred to as Hedges' g.
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best expresses this difference. In one case, a standardized measure such as d is best, and in
other cases, other measures, such as the distance between the means, is better.

As you will see in the next chapter, Cohen laid out some very general guidelines for
what he considered small, medium, and large effect sizes. He characterized d = .20 as an
effect that is small, but probably meaningful, an effect size of d = .50 as a medium effect
that most people would be able to notice (such as a half of a standard deviation difference
in IQ), and an effect size of 4 = .80 as large. We should not make too much of Cohen’s
levels, but they are helpful as a rough guide.

Reporting Results

SPSS Analysis

Reporting results for a t test on two independent samples is basically similar to reporting re-
sults for the case of dependent samples. In Adams’s et al. study of homophobia, two groups of
participants were involved—one group scoring high on a scale of homophobia and the other
scoring low. When presented with sexually explicit homosexual videos, the homophobic
group actually showed a higher level of sexual arousai (the mean difference = 7.50 units). A
ttest of the difference between means produced a statistically significant result (p < .05), and
Cohen’s d = .62 showed that the two groups differed by nearly 2/3 of a standard deviation.
However, the confidence limits on the population mean difference were rather wide
(1.46 < p; — pa < 13.54), suggesting that we do not have a tight handle on the size of our
difference.

The SPSS analysis of the Adams et al. (1996) data is given in Exhibit 7.2. Notice that SPSS
first provides what it calls Levene’s test for equality of variances. We will discuss this test
shortly, but it is simply a test on our assumption of homogeneity of variance. We do not
come close to rejecting the null hypothesis that the variances are homogeneous (p = .534),
so we don’t have to worry about that here. From now on, we will assume equal variances
and will focus on the next-to-bottom row of the table.

Group Statistics

Std. Std. Error
GROUP N Mean Deviation Mean
Arousal Homophobic 35 24.0000 12.2013 2.0624
Nonhomophobic 29 16.5034 11.7966 2.1906

Independent Samples Test

Levene's Test
for Equality of
Variances t-test for Equality of Means
95% Confidence
Interval of the
Sig. Mean Std. Error Difference
F Sig. t df (2-tailed) | Difference | Difference | Lower | Upper
Equal variances
assumed 391 534 2484 |62 016 7.4966 3.0183 1.4630 | 13.5301
Equal variances
not assumed 2492 | 60.495 .015 7.4966 3.0087 1.4794 | 135138

Exhibit 7.2 SPSS analyses of Adams et al. (1996) data
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Next note that the ¢ supplied by SPSS is the same as we calculated, and that the proba-
bility associated with this value of t (.016) is less than a = .05, leading to rejection of the null
hypothesis. Note also that SPSS prints the difference between the means and the standard
error of that difference, both of which we have seen in our own calculations. Finally, SPSS
prints the 95% confidence interval on the difference between means, and it agrees with ours.

A Final Worked Example

Joshua Aronson has done extensive work on what he refers to as “stereotype threat,” which
refers to the fact that “members of stereotyped groups often feel extra pressure in situations
where their behavior can confirm the negative reputation that their group lacks a valued abil-
ity.” (Aronson, Lustina, Good, Keough, Steele, & Brown, 1998) This feeling of stereotype
threat is then hypothesized to affect their performance, generally by lowering it from what
it would have been had they not felt threatened. Considerable work has been done with eth-
nic groups who are stereotypically reputed to do poorly in some area, but Aronson et al.
went a step further to ask if stereotype threat could actually lower the performance of white
males—a group not normally associated with stereotype threat.

Aronson et al. (1998) used two independent groups of college students who were known
to excel in mathematics, and for whom doing well in math was considered important. The
researchers assigned 11 students to a control group that was simply asked to complete a dif-
ficult mathematics exam. They assigned 12 students to a threat condition, in which they
were told that Asian students typically did better than other students in math tests, and that
the purpose of the exam was to help the experimenter to understand why this difference
exists. Aronson reasoned that simply telling white students that Astans did betier on math
tests would arouse feelings of stereotype threat and diminish the students’ performance.

The data in Table 7.6 have been constructed to have nearly the same means and standard
deviations as Aronson’s data. The dependent variable is the number of items correctly solved.

First, we need to specify the null hypothesis, the significance level, and whether we will
use a one- or a two-tailed test. We want to test the null hypothesis that the two conditions
perform equally well on the test, so we have Hy: ) = p,. We will set alpha at « = .05, in
line with what we have been using. Finally, we will choose to use a two-tailed test because
it is reasonably possible for either group to show superior math performance.

Next, we need to calculate the pooled variance estimate:

o m- s+ (= Ds3  103.17%) 4 11(3.03%)

’ n4n;—2 - 1H+12-2
10(10.0489) + 11(9.1809)  201.4789
= 2 == =9.5942

Table 7.6 Data from Aronson et al. (1998)

Control Subjects Threat Subjects
4 9 12 8 7 8 7 2
9 13 12 13 6 9 7 10
13 7 6 5 0 10 8
Mean = 9.64 Mean = 6.58
st. dev. = 3.17 st. dev. = 3.03
n = 11 ny = 12
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Finally, we can calculate 1 using the pooled variance estimate:

’_(Y,—Yz)_ (964-658) 306 _ 306 ..
2 52 95942 95942 16717 12929
W) e
PR 11 12

For this example, we have r; + nz — 2 = 21 degrees of freedom. From Appendix 1, we find
1025 = 2.080. Because 2.37 > 2.080, we will reject Hy and conclude that the two popula-
tion means are not equal.

If you were writing up the results of this experiment, you might write something like the
following:

This experiment tested the hypothesis that stereotype threat will disrupt the perfor-
mance even of a group that is not usually thought of as having a negative stereotype with
respect to performance on math tests. Aronson et al. (1998) asked two groups of partic-
ipants to take a difficult math exam. These were white male college students who
reported that they typically performed well in math and that good math performance
was important to them. One group of students (1 = 11) was simply given the math test
and asked to do as well as they could. A second, randomly assigned group (n = 12) was
informed that Asian males often outperformed white males and that the test was in-
tended to help to explain the difference in performance. The test itself was the same for
all participants. The results showed that the Control subjects answered a mean of 9.64
problems correctly, whereas the subjects in the Threat group completed only a mean of
6.58 problems. The standard deviations were 3.17 and 3.03, respectively. This repre-
sents an effect size (d) of .99, meaning that the two groups differed in the number of
items correctly completed by nearly one standard deviation.

Student’s ¢ test was used to compare the groups. The resulting #21) was 2.37, and
was significant at p < .05, showing that stereotype threat significantly reduced the per-
formance of those subjects to whom it was applied. The 95% confidence interval on the
difference in means is 0.3712 < p; — p < 5.7488. This is quite a wide interval, but
keep in mind that the two sample sizes were 11 and 12. An alternative way of compar-
ing groups is to note that the Threat group answered 32% fewer items correctly than did
the Control group.

7.7 Heterogeneity of Variance:
The Behrens-Fisher Problem

homogeneity
of variance

We have already seen that one of the assumptions underlying the ¢ test for two independent
samples is the assumption of homogeneity of variance (o7 = a} = o2). To be more spe-
cific, we can say that when Hy is true and when we have homogeneity of variance, then,
pooling the variances, the ratio
po Ko X3)
2 2
s s
A3
n o n
isdistributed astonn; + n, — 2 df. If we can assume homogeneity of variance, there is no dif-
ficulty, and the techniques discussed in this section are not needed. When we do not have ho-
mogeneity of variance, however, this ratio is not, strictly speaking, distributed as 7. This leaves
us with a problem, but fortunately a solution (or a number of competing solutions) exists.
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heterogeneous
variances

First, unless 012 = crz2 = ¢?, it makes no sense to pool (average) variances because the
reason we were pooling variances in the first place was that we assumed them to be esti-
mating the same quantity. For the case of heterogeneous variances, we will first dispense
with pooling procedures and define

where s7 and 5] are taken to be heterogeneous variances. As noted earlier the expression that
1 have just denoted as " is not necessarily distributed as 7 on 11, + n, — 24df. If we knew
what the sampling distribution of ¢’ actually looked like, there would be no problem. We
would just evaluate ¢’ against that sampling distribution. Fortunately, although there is no
universal agreement, we know at least the approximate distribution of 1’

The Sampling Distribution of t'

Behrens-Fisher
problem

Welch-
Satterthwaite
solution

One of the first attempts to find the exact sampling distribution of t' was begun by Behrens
and extended by Fisher, and the general problem of heterogeneity of variance has come to
be known as the Behrens-Fisher problem. Based on this work, the Behrens—Fisher distri-
bution of ¢ was derived and is presented in a table in Fisher and Yates (1953). However,
because this table covers only a few degrees of freedom, it is not particularly useful for most
purposes.

An alternative solution was developed apparently independently by Welch (1938) and
by Satterthwaite (1946). The Welch—Satterthwaite solution is particularly important
because we will refer back to it when we discuss the analysis of variance. Using this
method, ¢’ is viewed as a legitimate member of the ¢ distribution, but for an unknown num-
ber of degrees of freedom. The problem then becomes one of solving for the appropriate df,
denoted df"

The degrees of freedom (df’) are then taken to the nearest integer.!? The advantage of
this approach is that df” is bounded by the smaller of n; — I and n; — 1 at one extreme and
ny +ny — 2df at the other. More specifically, Min(n, — l,n; — 1) < df < ny +n, — 2.
Because the critical value of ¢ decreases as df increases, we can first evaluate ¢’ as if df’ were
atits minimum. If the difference is significant, it will certainly be significant for the true df"

12 Welch (1947) later suggested that letting

n+1 n+1
might be a more accurate solution, although the difference is negligible.
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If the difference is not significant, we can then evaluate ¢’ at its maximum ny + n, — 2. If it
is not significant at this point, no reduction in the degrees of freedom (by more accurate cal-
culation of df') would cause it to be significant. Thus, the only time we actually need to
calculate df’ is when the value of ' would not be significant for Min(n, — 1, n — 1) df but
would be significant for ny + ny — 2df.

In this book. we will rely primarily on the Welch-Satterthwaite approximation. It has
the distinct advantage of applying easily to problems that arise in the analysis of variance,
and it is not noticeably more awkward than the other solutions.

Testing for Heterogeneity of Variance

How do we know whether we even have heterogeneity of variance to begin with? We do not
know o7 and o7 (if we did we would not be solving for #), so we must in some way test their
difference by using our two sample variances (s} and s3).

A number of solutions have been put forth for testing for heterogeneity of variance. One
of the simpler ones was advocated by Levene (1960), who suggested replacing each value
of X either by its absolute deviation from the group mean—d; = |X;; — X;|—or by its
squared deviation—d;; = (X; — X;)>—where i and j represent the ith subject in the jth
group. He then proposed running a standard two-sample 1 test on the d;;s. This test makes in-
tuitive sense, because if there is greater variability in one group, the absolute, or squared,
values of the deviations will be greater. If ¢ is significant, we would then declare the two
groups to differ in their variances. Alternative approaches have been proposed—see, for
example, O’Brien (1981)—but they are rarely implemented in standard software, and I will
not elaborate on them here.

The procedures just described are suggested as replacements for the more traditional
test, which is a ratio of the larger sample variance to the smaller. This F has been shown by
many people to be severely affected by nonnormality of the data and should not be used.
The F test is still computed and printed by many of the large computer packages, but I do
not recommend using it.

The Robustness of t with Heterogeneous Variances

robust

I mentioned that the r test is what is described as robust, meaning that it is more or less
unaffected by moderate departures from the underlying assumptions. For the ¢ test for two
independent samples, we have two major assumptions and one side condition that must be
considered. The two assumptions are those of normality of the sampling distribution of
differences between means and homogeneity of variance. The side condition is the condi-
tion of equal sample sizes versus unequal sample sizes. Although we have just seen how
the problem of heterogeneity of variance can be handled by special procedures, it is still
relevant to ask what happens if we use the standard approach even with heterogeneous
variances.

Box (1953), Norton (1953), Boneau (1960), and many others have investigated the
effects of violating, both independently and jointly. the underlying assumptions of r. The
general conclusion to be drawn from these studies is that for equal sample sizes, violating
the assumption of homogeneity of variance produces very small effects—the nominal value
of & = .05 is most likely within £0.02 of the true value of o.. By this we mean that if you
set up a situation with unequal variances but with Hy true and proceed to draw (and com-
pute ¢ on) a large number of pairs of samples, you will find that somewhere between 3% and
7% of the sample  values actually exceed =t 5. This level of inaccuracy is not intolerable.
The same kind of statement applies to violations of the assumption of normality, provided
that the true populations are roughly the same shape or else both are symmetric. If the
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distributions are markedly skewed (especially in opposite directions), serious problems
arise unless their variances are fairly equal.

With unequal sample sizes, however, the results are more difficult to interpret. In
Boneau’s study, for example, sample variances were pooled in all cases because this is prob-
ably the most common procedure in practice (although it is incorrect for heterogeneoys
variances). Boneau found that when there was heterogeneity of variance and unequal sam-
ple sizes, the actual and normative probability values differed considerably. Keep in mind,
however, that Boneau was pooling variances and evaluating 7 on n; + 1y — 2df. We do not
know what would have happened had he solved for +' and then evaluated ¢’ on df degrees
of freedom. We do know, however, that had he done so, it would be reasonable to expect that
the test would have proven to be robust because the Welch—Satterthwaite solution does not
require the homogeneity assumption.

The investigator who has collected data that she thinks may violate one or more of the
underlying assumptions should refer to the article by Boneau (1960). This article may be old,
but it is'quite readable and contains an excellent list of references to other work in the area.
A good summary of alternative procedures can be found in Games, Keselman, and Rogan
(1981).

Wilcox (1992) has argued persuasively for the use of trimmed samples for comparing
group means with heavy-tailed distributions. (Interestingly, statisticians seem to have a fond-
ness for trimmed samples, whereas psychologists and other social science practitioners seem
not to have heard of trimming.) He provides results showing dramatic increases in power
when compared with more standard approaches. Alternative nonparametric approaches,
including “resampling statistics,” are discussed in Chapter 18 of this book. These can be very
powerful techniques that do not require unreasonable assumptions about the populations
from which you have sampled. [ suspect that resampling statistics and related procedures will
be in the mainstream of statistical analysis in the not-too-distant future.

7.8 Hypothesis Testing Revisited

In Chapter 4, we spent quite a bit of time on examining the process of hypothesis testing.
pointed out that the traditional approach involves setting up a null hypothesis, and then gen-
erating a statistic that tells us how likely we are to find the obtained results if, in fact, the null
hypothesis is true. In other words, we calculate the probability of the data given the null, and
if that probability is very low, we reject the null.

In that chapter, we also looked briefly at a proposal by Jones and Tukey (2000) in which
they approached the problem slightly differently. Now that we have several examples, this
is a good point to go back and look at their proposal. In discussing the Adams et al. study of
homophobia, I suggested that you think about how Jones and Tukey would have approached
the issue. I am not going to repeat the traditional approach because that is laid out in each of
the examples of how to write up our results.

The study by Adams et al. (1996) makes a good example. I imagine that all of us would
be willing to agree that the null hypothesis of equal population means in the two conditions
is highly unlikely to be true. Even laying aside the argument about differences in the 10th
decimal place, it just seems unlikely that people who differ appreciably in amount of
homophobia would show exactly the same mean level of arousal to erotic videos. We don’t
know which group will show the greater arousal, but one population mean is certain to be
larger than the other. So we can rule out the null hypothesis (Hy: py ~ wy = 0) as a viable
possibility. That leaves us with three possible conclusions we could draw as a result of our
test. The first is that py < py, the second is that wy > Ly, and the third is that we do not
have sufficient evidence to draw a conclusion.
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Now let’s look at the possibilities of error. It could actually be that .y < .y, but that we
draw the opposite conclusion by deciding that the nonhomophobic participants are more
aroused. This is what Jones and Tukey call a “reversal,” and the probability of making this
error if we use a one-tailed test at a. = .05 is .05. Alternatively, it could be that py > py but
that we make the error of concluding that the nonhomophobic participants are less aroused.
Again with a one-tailed test, the probability of making this error is .05. It is not possible for
us to make both of these errors because one of the hypotheses is true, so using a one-tailed
test (in both directions) at a = .05 gives us a 5% error rate. In our particular example, the
critical value for a one-tailed test on 62 df is approximately 1.68. Because our obtained
value of r was 2.48, we will conclude that homophobic participants are more aroused, on
average, than nonhomophobic participants were. Notice that in writing this paragraph I
have not used the phrase “Type I error” because that refers to rejecting a true null, and I
have already said that the null can’t possibly be true. Notice that my conclusion did not con-
tain the phrase “rejecting the hypothesis.” Instead, I referred to “‘drawing a conclusion.”
These are subtle differences, but I hope this example clarifies the position taken by Jones
and Tukey.

Sampling distribution of the mean (7.1) Related samples (7.4)
Central limit theorem (7.1)
Uniform distribution (7.1)

Standard error (7.2)

Student’s ¢ distribution (7.3)

Point estimate (7.3)

Confidence limits (7.3) )
Confidence intervat (7.3)

p level (7.3)
Matched samples (7.4)

Repeated measures (7.4)

Exercises

Pooled variance estimate (7.5)
Matched-sample  test (7.4) Homogeneity of variance (7.7)
Difference scores (7.4) Heterogeneous variances (7.7)
Behrens—Fisher problem (7.7)

Welch—Satterthwaite solution (7.7)

Gain scores (7.4)
Cohen’sd (7.4)

Sampling distribution of differences Robust (7.7)
between meaas (7.5)

Variance sum law (7.5)

Standard error of differences between
means (7.5)

Weighted average (7.5)

7.1  The following numbers represent 100 random numbers drawn from a rectangular population
with 2 mean of 4.5 and a standard deviation of 2.7. Plot the distribution of these digits.

6 4 8 7 8 7 0 8 2 8 5 7
4 8 2 6 9 0 2 6 4 9 0 4
9 3 4 2 8 2 0 4 1 4 7 4
1 7 4 2 4 1 4 2 8 7 9 7
3 7 4 7 3 1 6 7 t 8 7 2
7 6 2 1 8 6 2 3 3 6 5 4
1 7 2 i 0 2 6 0 8 3 2 4
3 8 4 5 7 0 8 4 2 8 6 3
7 3 5 1

7.2 Idrew 50 samples of 5 scores each from the same population that the data in Exercise 7.1
came from, and calculated the mean of each sample. The means are shown here. Plot the dis-
tribution of these means.
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7.3

74
7.5
7.6

17

78

7.9

7.10
7.11

7.12
7.13

7.14

28 62 44 50 10 46 38 26 40 48

66 46 62 46 56 64 34 54 52 72

54 26 44 42 44 52 40 26 52 40

36 46 44 50 56 34 32 44 48 38

44 28 38 46 54 46 24 58 46 48

Compare the means and the standard deviations for the distribution of digits in Exercise 7.1

and the sampling distribution of the mean in Exercise 7.2.

a. What would the central limit theorem lead you to expect in this situation?

b. Do the data correspond to what you would predict?

How would the result in Exercise 7.2 differ if you had drawn more samples of size 57

How would the result in Exercise 7.2 differ if you had drawn 50 samples of size 157

In 1979, the 238 students from North Dakota who took the verbal portion of the SAT exam

had a mean score of 525. The standard deviation was not reported.

a. Is this result consistent with the idea that the SAT has a mean of 500 and a standard
deviation of 1007

b.  Would you have rejected Hy had you been looking for evidence that SAT scores in gen-
eral have been declining over the years from the mean of 5007

c. If you rejected Hy in part (a), you might draw some conclusions about North Dakota's
students or our assumption about the general population of students. What are those pos-
sible conclusions?

Why do the data in Exercise 7.6 not really speak to the issue of whether American education

in general is in a terrible state?

1In 1979, the 2,345 students from Arizona who took the math portion of the SAT had a mean

score of 524. Is this consistent with the notion of a population mean of 500 if we assume that

o = 100?

Why does the answer to Exercise 7.8 differ substantially from the answer to Exercise 7.6

even though the means are virtually the same?

Compute 95% confidence limits on . for the data in Exercise 7.6.

Everitt, in Hand et al. (1994), reported on several different therapies as treatments for

anorexia. There were 29 girls in a cognitive-behavior therapy condition, and they were

weighed before and after treatment. The weight gains of the girls, in pounds, are given here.

The scores was obtained by subtracting the Before score from the After score, so that a neg-

ative difference represents weight loss, and a positive difference represents a gain.

17 07 -01 =07 -35 149 35 171 -76 16 11.7

61 1 -40 209 -91 21 -14 14 -03 -37 -08

24 126 19 39 01 154 -07

a.  What does the distribution of these values look like?

b. Did the girls in this group gain a statistically significant amount of weight?

Compute 95% confidence limits on the weight gain in Exercise 7.11.

Katz, Lautenschiager, Blackburn, and Harris (1990) examined the performance of 28 stu-

dents who answered multiple-choice items on the SAT without having read the passages to

which the items referred. The mean score (out of 100) was 46.6, with a standard deviation of

6.8. Random guessing would have been expected to result in 20 correct answers.

a. Were these students responding at better-than-chance levels?

b. If performance is statistically significantly better than chance, does it mean that the SAT
test is not a valid predictor of future college performance?

Compas and others (1994) were surprised to find that young children under stress actually re-

port fewer symptoms of anxiety and depression than we would expect. But they also noticed

that their scores on a Lie Scale (a measure of the tendency to give socially desirable answers)

7.15

717
7.18

7.19

7.20
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were higher than expected. The population mean for the Lie scale on the Children’s Manifest
Anxiety Scale (Reynolds & Richmond, 1978) is known to be 3.87. For a sample of 36 chil-
dren under stress, Compas et al. found a sample mean of 4.39, with a standard deviation
of 2.61.

a. How would we test whether this group shows an increased tendency to give socially
acceptable answers?

b.  What would the null hypothesis and research hypothesis be?
c. What can you conclude from the data?

Calculate the 95% confidence limits for . for the data in Exercise 7.14. Are these limits con-
sistent with your conclusion in Exercise 7.14?

Hoaglin, Mosteller, and Tukey (1983) present data on blood levels of beta-endorphin as a
function of stress. They took beta-endorphin levels for 19 patients 12 hours before surgery,
and again 10 minutes before surgery. The data are presented here, in fmol/mil:

1D 1 2 3 4 5 6 7 8 9 10
12 hours 10.0 6.5 8.0 120 50 115 5.0 35 75 58
10 minutes 65 140 135 18.0 145 9.0 180 420 75 6.0
D n 12 13 14 15 16 17 18 19
12 hours 4.7 8.0 70 170 88 170 150 44 20
10 minutes 250 12.0 520 200 160 150 11.5 25 20

Based on these data, what effect does increased stress have on beta-endorphin levels?

Why would you use a matched-sample ¢ test in Exercise 7.16?

Construct 95% confidence limits on the true mean difference between beta-endorphin levels
at the two times described in Exercise 7.16.

Hout, Duncan, and Sobel (1987) reported on the relative sexual satisfaction of married cou-
ples. They asked each member of 91 married couples to rate the degree to which they agreed
with “Sex is fun for me and my partner” on a four-point scale ranging from “never or occa-
sionally” to “almost always.” The data appear below (I know it’s a lot of data, but it’s an in-
teresting question):

Husband 1
Wife I
Husband 1
Wife 3
Husband 2
Wife 3
Husband 3
Wife 3
Husband 4
Wife 2
Husband 4 4
Wife 3 4

Start by running a matched-sample ¢ test on these data. Why is a matched-sample test
appropriate?
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In the study referred to in Exercise 7.19, what, if anything does your answer to that question
tell us about whether couples are sexually compatible? What do we know from this analysis,
and what don’t we know?

For the data in Exercise 7.19, create a scatterplot and calculate the correlation between hus-
band’s and wife's sexual satisfaction. How does this amplify what we have learned from the
analysis in Exercise 7.19. (I do not discuss scatterplots and correlation until Chapter 9, but
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722

724

7.25

7.27

728

7.29

7.30

7.31

a quick glance at Chapter 9 should suffice if you have difficulty. SPSS will easily do the
calculation.)

Construct 95% confidence limits on the true mean difference between the Sexual Satisfac-
tion scores in Exercise 7.19, and interpret them with respect to the data.

Some would object that the data in Exercise 7.19 are clearly discrete, if not ordinal, and that
it is inappropriate to run a f test on them. Can you think what might be a counter argument?
(This is not an easy question, and I really asked it mostly to make the point that there could
be controversy here.)

Give an example of an experiment in which using related samples would be ill advised
because taking one measurement might influence another measurement.

Everitt, in Hand et al. (1994), (see Exercise 7.11) reported on family therapy as a treatment
for anorexia. There were 17 girls in this experiment, and they were weighed before and after
treatrnent. The weights of the girls, in pounds, are given here. The row of difference scores
was obtained by subtracting the Before score from the After score, so that a negative differ-
ence represents weight loss, and a positive difference represents a gain.

1D 1 2 3 4 5 6 7 8 9 10

Before 838 833 860 825 867 796 769 94.2 734 80.5
After 952 943 915 919 1003 767 7638 101.6 949 752

Diff 114 110 55 94 136 -29 - 74 215 -53
iD 1" 12 13 14 15 16 17 Mean St. Dev
Before 816 821 776 835 899 8.0 873 83.23 5.02
After 778 955 907 925 938 91.7 980 90.49 8.48
Diff -38 134 131 9.0 39 5.7 10.7 7.26 7.16

a.  What null hypothesis would these data lead you to want to test?
b.  Run the appropriate ¢ test and draw the appropriate conclusion.

What would happen in Exercise 7.25 if I subtracted the After score from the Before score,
instead of the other way around?

Calculate a confidence interval on the weight gain for the girls in Everitt’s study in Exer-
cise 7.25.

Graph the relationship between the Before and After scores to evaluate the degree to which
the two sets of scores are related. (I do not discuss scatterplots until Chapter 9, but you
should be able to work this out for yourself.)

In the study referred to in Exercise 7.13, Katz et al. (1990) compared the performance on
SAT items of a group of 17 students who were answering questions about a passage after
having read the passage with the performance of a group of 28 students who had not seen the
passage. The mean and standard deviation for the first group were 69.6 and 10.6, whereas for
the second group they were 46.6 and 6.8.

a.  What is the null hypothesis?

b.  What is the alternative hypothesis?
¢.  Run the appropriate ¢ test.

d. Interpret the results.

Many mothers experience a sense of depression shortly after the birth of a child. Design a
study to examine postpartum depression and, from material in this chapter, tell how you
would estimate the mean increase in depression.

In Exercise 7.25, we saw data from Everitt that showed that girls receiving family therapy
gained weight over the course of that therapy. However, it is possible that they just gained
weight because they got older. One way to control for this is to look at the amount of weight
gained by the Family Therapy group (1 = 17) in contrast with the amount gained by girls in
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a Control group (n = 26), who received no therapy. The data on weight gain for the two
groups is shown below,

Control Family Therapy
-0.5 33 11.4 9.0
-9.3 1.3 11.0 39
-54 0.0 55 57
123 -1.0 94 10.7
-2.0 —10.6 13.6
-10.2 ~4.6 -2.9
—12.2 —6.7 -0.1
11.6 28 7.4
=71 03 21.5
6.2 1.8 -53
-0.2 37 -38
-9.2 15.9 13.4
83 -10.2 13.1
Mean —0.45 7.26
St Dev. 7.99 7.16
Variance 63.82 51.23

Run the appropriate test to compare the group means. What would you conclude?
Calculate the confidence interval on . — . for the data in Exercise 7.31.

In Exercise 7.19, we saw pairs of observations on sexual satisfaction for husbands and wives.
Suppose that those data had actually come from unrelated males and females, such that the
data are no longer paired. What effect you expect this to have on the analysis?

Run the appropriate ¢ test on the data in Exercise 7.19 assuming that the observations are
independent. What would you conclude?

Why isn’t the difference between the results in Exercises 7.34 and 7.19 greater than it is?

What is the role of random assignment in the Everitt’s anorexia study referred to in Exercise
7.31. and under what conditions might we find it difficult to carry out random assignment?

The Thematic Apperception Test (TAT) presents subjects with ambiguous pictures and asks
them to tell a story about them. These stories can be scored in any number of ways. Werner,
Stabenau, and Pollin (1970) asked mothers of 20 Normal and 20 Schizophrenic children to
complete the TAT and scored for the number of stories (out of 10) that exhibited a positive
parent-child relationship. The data follow:

Normal 8 4 6 3 1 4 4 6 4 2
Schizophrenic 2 1 ! 3 2 7 2 1 3 1
Normal 2 1 1 4 3 3 2 6 3 4
Schizophrenic 0 2 4 2 3 3 0 1 2 2

a.  What would you assume to be the experimental hypothesis behind this study?

b.  What would you conclude with respect to that hypothesis?

In Exercise 7.37, why might it be smart to look at the variances of the two groups?

In Exercise 7.37, a significant difference might lead someone to suggest that poor parent-child
relationships are the cause of schizophrenia. Why might this be a troublesome conclusion?
Much has been made of the concept of experimenter bias, which refers to the fact that even
the most conscientious experimenters tend to collect data that come out in the desired direc-
tion (they see what they want to see). Suppose we use students as experimenters. All the
experimenters are told that subjects will be given caffeine before the experiment, but one-
half of the experimenters are told that we expect caffeine to lead to good performance and




210 Chapter 7 Hypothesis Tests Applied to Means

7.41
742

743

7.44
7.45

7.47

7.48

7.49
7.50

one-half are told that we expect it to lead to poor performance. The dependent variable is the
number of simple arithmetic problems the subjects can solve in 2 minutes. The data obtained
are as follows:

Expectation good: 19 15 22 13 18 15 20 25 22
Expectation poor: 4 18 17 12 21 21 24 14

What can you conclude?
Calculate 95% confidence limits on ., — p for the data in Exercise 7.40.

An experimenter examining decision making asked 10 children to solve as many problems
as they could in 10 minutes. One group (5 subjects) was told that this was a test of their
innate problem-solving ability: a second group (5 subjects) was told that this was just a time-
filling task. The data follow:

Innate ability: 4 5 8 3 7
Time-filling task: 11 6 9 7 9

Does the mean number of problems solved vary with the experimental condition?

A second investigator repeated the experiment described in Exercise 7.42 and obtained the
same results. However, she thought that it would be more appropriate to record the data in
terms of minutes per problem (e.g., 4 problems in 10 minutes = 10/4 = 2.5 minutes/problem).
Thus, her data were as follows:

Innate ability: 2.50 2.00 1.25 3.33 1.43
Time-filling task: 0.91 1.67 L. 1.43 1.11

Analyze and interpret these data with the appropriate 7 test.
What does a comparison of Exercises 7.42 and 7.43 show you?

I stated earlier that Levene’s test consists of calculating the absolute (or squared) differences
between individual observations and their group’s mean, and then running a / test on those
differences. Using any computer software, it is simple to calculate those absolute and
squared differences and then to run a ¢ test on them. Calculate both and determine which
approach SPSS is using in the example. (Hint, F = r* here, and the F value that SPSS actu-
ally calculated was 0.391148, to 6 decimal places.)

Research on clinical samples (i.e., people referred for diagnosis or treatment) has suggested
that children who experience the death of a parent may be at risk for developing depression
or anxiety in adulthood. Mireault (1990) collected data on 140 college students who had
experienced the death of a parent, 182 students from two-parent families, and 59 students
from divorced families. The data are found in the file Mireault.dat and are described in
Appendix: Computer Exercises.

a.  Use any statistical program to run f tests to compare the first two groups on the Depres-
sion, Anxiety, and Global Symptom Index ¢ scores from the Brief Symptom Inventory
(Derogatis, 1983).

b. Are these three ¢ tests independent of one another? (Hint: To do this problem you will
have to ignore or delete those cases in Group 3 [the Divorced group). Your instructor or
the appropriate manual will explain how to do this for the particular software that you
are using.)

It is commonly reported that women show more symptoms of anxiety and depression than

men. Would the data from Mireault’s study support this hypothesis?

Now run separate ¢ tests to compare Mireault’s Group | versus Group 2, Group 1 versus
Group 3, and Group 2 versus Group 3 on the Global Symptom Index. (This is not a good way
to compare the three group means, but it is being done here because it leads to more appro-
priate analyses in Chapter 12.)

Present meaningful effect sizes estimate(s) for the matched pairs data in Exercise 7.25.

Present meaningful effect sizes estimate(s) for the two independent group data in Exer-
cise 7.31.
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Discussion Questions

751

In Chapter 6 (Exercise 6.38), we examined data presented by Hout et al. on the sexual satis-
faction of married couples. We did that by setting up a contingency table and computing x*
on that table. We looked at those data again in a different way in Exercise 7.19, where we ran
artest comparing the means. Instead of asking subjects to rate their statement “Sex is fun for
me and my partner” as “Never, Fairly Often, Very Often, or Almost Always,” we converted
their categorical responses to a four-point scale from 1 = “Never” 10 4 = “Almost Always.”

a. How does the “scale of measurement” issue relate to this analysis?

b.  Even setting aside the fact that this exercise and Exercise 6.37 use different statistical
tests, the two exercises are asking quite different questions of the data. What are those
different questions?

¢. What might you do if 15 wives refused to answer the question, although their husbands
did, and 8 husbands refused to answer the question when their wives did?

d. How comfortable are you with the ¢ test analysis, and what might you do instead?

Write a short paragraph containing the information necessary to describe the results of the

experiment discussed in Exercise 7.31. This should be an abbreviated version of what you
would write in a research article.



