Sampling Distributions
and Hypothesis Testing

Objectives

To lay the groundwork for the procedures discussed in this book by examining
the general theory of hypothesis testing and describing specific concepts as
they apply to all hypothesis tests.

Contents

4.1 Two Simple Examples Involving Course Evaluations and Rude Motorists
4.2 Sampling Distributions

4.3 Theory of Hypothesis Testing

4.4 The Null Hypothesis

4.5 Test Statistics and Their Sampling Distributions
4.6 Using the Normal Distribution to Test Hypotheses
4.7 Type | and Type H Errors

4.8 One- and Two-Tailed Tests

4.9 What Does It Mean to Reject the Null Hypothesis?
4.10  An Alternative View of Hypothesis Testing

4.11 Effect Size

4.12  AFinal Worked Example

4.13  Back to Course Evaluations and Rude Motorists

83



84 Chapter 4 Sumpling Distributions and Hy pothesis Testing

sampling error

[N CHAPTER 2. we examined a number ot different statistics and saw how they might be used
10 describe a set of data or to represent the frequency of the occurrence of some event.
Although the description of the data is importunt and fundamental to any analysis. it is not
sufficient to answer many of the most interesting problems we encounter. [n a typical ex-
periment. we might treat one group of people in a special way and wunt to see whether their
scotes differ from the scores of people in general. Or we might offer a treatment to one
eroup but not to a control group und want to compare the means of the two groups on some
variable. Descriptive statistics will not tell us. for example. whether the ditference between
a sample mean and a hypothetical population meun. or the difference between two obtained
sample meuns. is small enough to be explained by chance alone or whether it represents a
true difference that might be attributable to the etfect of our experimental treatment(s).

Statisticians frequently use phrases such as “variability due to chance™ or “sampling
error™ and assume that you know what they mean. Probably you do, but it you do not. you
are headed for confusion in the remainder of this book unless we spend a minute clarifying
the meaning of these terms. We will begin with a simple example.

In Chapter 3. we considered the distribution of Total Behavior Problem scores from the
Achenbach Youth Seli-Report form. Total Behavior Problem scores are normally distributed
in the population (i.e.. the complete population of such scores is approximately normally
distributed) with a population mean () of 30 and a population standard deviation (o) of 10.
We know that different children show different levels of problem behaviors and therefore
have different scores. We also know that if we took a sample of children. their sample mean
would probably not equal exactly 50. One sample of children might have a mean of 49, but
a second sample might have a mcan of 32.3. The actual sample means would depend on the
particular children who happened to be included in the sample. This expected variability
from sample to sample is what is meunt when we speak of “variability due to chance.” The

. means) obtained from samples naturally

phrase refers to the tuct that statistics (in this ¢
vary from one sample to another.

Along the sume lines, the term sampling error often is used in this context ds a syn-
onym for variability due to chance. It indicates that the numerical value of a sample statis-
tic probably will be in error (i.e.. will deviate from the purameter itis estimating) as a result
of the particular observations that happened to be included in the sample. In this context,
“error” does not imply carelessness or mistakes. [n the case of behavior problems. one ran-
dom sample might just happen to include an unusually obnoxious child. whereas another
sample might happen 1o include an unusual number of relatively well-behaved children.

4.1 Two Simple Examples Involving Course
Evaluations and Rude Motorists

One example that we will investigate when we discuss correlation and regression fooks at
the relationship between how students evaluate a course and the grade they expect to receive
in that course. Many faculty feel strongly about this topic because even the best instructors
turn to the semiannual course evaluation forms with some trepidation—perhaps the same
amount of trepidation with which many students open their grade report form. Some faculty
think that a course is good or bud independently of how well a student feels he or she will
do in terms of a grade. Others feel that a student who seldom came to class and who will do
those who argue

poorty as a result will also unfairly rate the course as poor. Finally. there
that stuclents who do well and experience success take something away from the course
other than just a grade and that those students will generally rate the course highly. But the
relationship between course ratings and student performance is an empirical question and.

hypothesis
testing

N
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as such. can be answered by looking at relevant data. Suppose that in a random sample of
50 courses we find a general trend for students in a course in which they expect to do well
to rate the course highly. and for students to rate courses in which they expect to do poorly
as fow in overall quality. How do we tell whether this trend in our small data set is repre-
sentative of a trend among students in general or just an odd result that would disappear if
we ran the study again? (For your own interest. make your prediction of what kind of results
we will find. We will return to this issue later.)

A second example comes from a study by Doob and Gross (1968), who investigated the
influence of perceived social status. They found that if an old. beat-up (low-status) gar failed
to start when a traffic light turned green. 84% of the time the driver of the second car in line
honked the horn. However, when the stopped car was an expensive, high-status car, the
following driver only hortked 50% of the time. These results could be explained in one of
two ways:

L. The difference between 84% in one sample and 50% in a second sample is attributable
to sampling error (random variability among samples); therefore, we cannot conclude
that perceived social status influences horn-honking behavior.

[§)

. The difference between 84% and 50% is large and reliable. The difference is not attrib-
utable to sampling error; therefore, we conclude that people are less likely to honk at dri-
vers of high-status cars.

Although the statistical calculations required to answer this question are different from
those used to answer the one about course evaluations (because the first deals with relation-
ships and the second deals with proportions). the underlying logic is fundamentally the
same.

These examples of course evaluations and horn honking are two kinds of questions that
fall under the heading of hypothesis testing. This chapter is intended to present the theory
of hypothesis testing in as general a way as possible. without going into the specific tech-
niques or properties of any particular test. [ will focus largely on the situation involving
differences instead of the situation involving relationships, but the logic is basically th;
same. (You will see additional material on examining relationships in Chapter9.) 1 am‘very
deliberately glossing over details of computation because my purpose is to explore the con-
cepts of hypothesis testing without involving anything but the simplest technical details.

. We need to be explicit about what the problem is here. The reason for having hypothe-
sis testing in the first place is that data ure ambiguous. Suppose that we want to decide
whether larger classes receive lower student ratings. We all know that some large classes are
terrific, and others are really dreadful. Similarly, there are both good and bad ;mall classes.
So if we coltect data on large classes, for example. the mean of several large classes will de-
pend to some extent on which large courses just happen to be included in our sample. If we
reran our data collection with a new random sample of large classes. that mean would
almost certainly be different. A similar situation applies for small classes. When we find a
difference between the means of samples of large and small classes, we know that the dif-
ference would come out slightly differently if we collected new data. So a difference be-
tween the means is ambiguous. Is it greater than zero because large classes are worse than
sinall ones, or because of the particular samples we happened to pick? Well. if the difference
is quite large, it probably reflects differences between small and large classes. If it is quite
small, it probably reflects just random noise. But how large is “large™ and how small is
“small™? That is the problem we are beginning to explore, and that is the subject of this
chapter.

If we are going to look at either of the two examples luid out earlier, or at a third one to
follow, we need to find some way of deciding whether we are looking at a small chance fluc-
tuation between the horn-honking rates for low- and high-status cars or a difference that is
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sufficiently large for us to believe thut people are much less likely to honk at those they con-
sider higher in status. If the differences are small enough to attribute o chance variability.
we may well not worry about them further. On the other hand, if we can rule out chance as
the source of the difference, we probably need to look further. This decision about chance is
what we mean by hypothesis testing.

4.2 Sampling Distributions

sampling
distributions

{n addition to course evaluations and horn honking, we will add a third example, which is
one to which we can all relate. [t involves those annoying people who spend what seems to
us an unreasonable amount of time vacating the parking space we are waiting for. Ruback
and Juieng (1997) ran a simple study in which they divided drivers into two groups of
100 participants each—those who had someone waiting for their space and those who did
not. Ruback and Juieng then recorded the amount of time that it took the driver to leave the
parking space. For those drivers who had no one waiting. it took an average of 32.15 sec-
onds to leave the space. For those who did have someone waiting. it took an average of
39.03 seconds. For each of these groups. the standard deviation of waiting times was 14.6
seconds. Notice that a driver took 6.88 seconds longer to leave a space when someone was
waiting for it. (If you think about it, 6.88 seconds is a long time if you are the person doing
the waiting.)

There are two possible explanations here. First, it is entirely possible that having
someone waiting doesn’t make any difference in how long it takes to leave a space, and
that normally drivers who have no one waiting for them take, on average, the same length
of time as do drivers who have someone waiting. In that case, the difference that we found
is just a result of the particular samples we happened to obtain. What-we are saying herc
is that if we had whole populations of drivers in each of the two conditions, the popula-
tions' means { paewaic 204 Pyan) would be identical and any difference we find in our sam-
ples is sampling error. The alternative explanation is that the population means really are
different and that people actually do take longer to leave a space when there is someone
waiting for it. If the sample means had come out to be 32.15 and 32.18, you and [ would
probably side with the first explanation—or at least not be willing to reject it. It the means
had come out to be 32.15 and 59.03. we would probably be likely to side with the second
explanation—having someone waiting actually makes a difference. But the difference we
found is actually somewhere in between, and we need to decide which explanation is more
reasonable.

We want to answer the question "Is the obtained difference too great to be attributable
to chance?” To do this, we have to use what are called sampling distributions, which tell
us specifically what degree of sample-to-sample variability we can expect by chance as a
function of sampling error,

The most basic concept underlying all statistical tests is the sampling distribution of a
statistic. It is fair to say that if we did not have sampling distributions. we would not have
any statistical tests. Roughly speaking. sampling distributions tell us what values we might
(or might not) expect to obtain for a particular statistic under a set of predefined conditions

(¢.g.. what the sample differences between our two samples might be expected to be if

the true means of the populations from which those samples came are equal?) In addition, the
standard deviation of that distribution of ditfercnces between sample means (known as
the “standard error™ of the distribution) reflects the variability that we would expect to find
in the values of that statistic (differences between means) over repeated trials. Sampling

sampling
distribution of
the differences
between means
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distributions provide the opportunity to evaluate the likelihood (given the value of a sample
statistic) that such predefined conditions actually exist.

Basically, the sampling distribution of a statistic can be thought of as the distribution of
values obtained for that statistic over repeated sampling (i.e., running the experiment, or
drawing samples. an unlimited number of times). Sampling distributions are almost always
derived mathematically. but tt is easier to understand what they represent if we consider h(;w
they could. in theory. be derived empirically with a simple sampling experiment.

We will take as an illustration the sampling distribution of the differences between
means because it relates directly to our example of waiting times in parking lots. The sam-
pling distribution of differences between means is the distribution of differences between
means of an infinite number of random samples drawn under certain specified conditions
(e.g.. under the condition that the true means of our populations are equal). Suppose we
have two populations with known means and standard deviations (Here we will suppose that
the two population means are 35 and the standard deviation is 13, though what the values
are is not critical to the logic of our argument.) Further suppose that we draw a very large
number (theoretically an infinite number) of pairs of random samples from these popula-
tions. each sample consisting of 100 scores. For each sample we will calculate its sample
mean and then the difference between the two means in that draw. When we finish drawing
all the pairs of samples. we will plot the distribution of these differences. Such a distribution
would be a sampling distribution of the difference between means and might look like the
one preseated in Figure 4.1. The center of this distribution is at 0.0, because we expect that,
on average. differences between sample means will be 0.0. (The individual means them-
selves will be roughly 35.) We can see from this figure that differences between sample
means of approximately —1.5 and 1.5, for example, are quite likely to occur when we sam-
ple from identical populations. We also can see that it is extremely unlikely that we would
draw samples from these populations that differ by 4.5 or more. Knowing the kinds of val-
ues to expect for the difference of means of samples drawn from these populations allows
us to turn the question around and ask whether an obtained sample mean difference can be
taken as evidence in favor of the hypothesis that we acrually are sampling from identical
populations—or populations with the same mean.

Notice here that the most common event we would find in drawing pairs of samples is
that the means don’t ditfer. (Wyan = Mwai) = 0. (That is the mode [and the mean] of that
distribution.) It is also tairly common to find differences of 1.5 or 2. though it is rare to find
difterences of 4.5.

5
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Figure 4.1 Distribution of difference between means, each based on 100 scores
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4.3 Theory of Hypothesis Testing

Preamble

One of the major ongoing discussions in statistics in the behavioral sciences relates to
hypothesis testing. The logic and theory of hypothesis testing has been debated for at least
75 years, but recently that debate has intensified considerably. The exchanges on this topic
have not always been constructive (referring to your opponent’s position as “bone-headedly
misguided.” “a perversion of the scientific method.” or “ridiculous™ usually does not win
them to your cause), but some real and positive changes have come as a result. The changes
are sufficiently important that much of this chapter, and major parts of the rest of the book.,
have been rewritten to accommodate them.

The arguments about the role of hypothesis testing concern several issues. First, and
most fundamental. is hypothesis testing a sensible procedure? I think that it is, and whether
it is or isn’t, the logic involved is refated to so much of what we do, and is so central to what
you will see in the experimental literature, that you have to understand it whether you
approve of it or not. Second. what logic will we use for hypothesis testing? The dominant
logic has been an amalgam of positions put forth by R. A. Fisher and by Neyman and Pearson,
dating {rom the 1920s and 1930s. (This amalgam is one to which both Fisher and Neyman
and Pearson would express deep reservations, bus it has grown to be employed by many,
particularly in the behavioral sciences.) We will discuss that approach first, but follow it by
more recent conceptualizations that lead to roughly the same point, but do so in what many
feel is @ more logical and rational process. Third, and perhaps most importantly, what do we
need to consider in addivion 1o waditional hypothesis testing? Running a statistical test and
declaring a difterence to be statistically significant at “p < .05” is no tonger sufficieat. A
hypothesis test can only suggest whether a relationship is reliable or it is not, or that a dif-
ference between two groups is likely to be the resuit of chance, or that it probably is not. In
addition to running a hypothesis test, we need to tell our readers something about the dif-
ference itself, about confidence limits on that difference, and about the power of our test.
This will involve a change in emphasis from earlier editions, and will affect how I describe
results in the rest of the book. I think the basic conclusion is that simple hypothesis testing,
no matter how you do it, is important. but it is not enough. It the debate has done nothing
else, getting us to that point has been very important. You can see that we have a lot to cover,
but once you understand the positions and the proposals, you will have a better grasp of the
issues than most people in your field.

The American Psychological Association recenily put together a task force to look at the
general issue of hypothesis tests, and its report is now available (Wilkinson, 1999; see also
http://www.loyola.edu/library/ref/articles/Wilkinson.pdf). Further discussion of this issue
was included in an excellent paper by Nickerson (2000). These two documents do a very
effective job of summarizing current thinking in the field. These recommendations have
influenced the coverage of material in this book, and you will see more frequent references
to confidence limits and effect size measures than you would have seen in previous editions.

The Traditional Approach to Hypothesis Testing

For the next several pages. we will consider the traditional treatment of hypothesis testing.
This is the trearment that you will find in almost any statistics text and is something that you
need to fully understand. The concepts here are central to what we mean by hypothesis test-
ing. no matter who is speaking about it.

4
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We have just been discussing sampling distributions. which lie at the heart of the treat-
ment of research data. We do not go around obtaining sampling distributions, either mathe-
matically or empirically. simply because they are interesting to look at. We have important
reasons for doing so. The usual reason is that we want to test some hypothesis. Let’s go back
to the sampling distribution of differences in mean times that it takes people to leave a park-
ing space. We want to test the hypothesis that the obtained ditference between sample
means could reasonably have arisen had we drawn our samples from populations with the
samie mean. This is another way of saying that we want to know whether the mean depur-
ture time when someone is waiting is different from the mean departure time when there is
no one waiting. One way we can test such a hypothesis is to have some idea of the proba-
bility of obtaining a difference in sample means as extreme as 6.88 seconds f we actually
sampled observations from populations with the same mean. The answer to this question is
preciscly what a sampling distribution 1s designed to provide.

Suppose we obtained (constructed) the sampling distribution plotted in Figure 4.1. Sup-
pose further. for the sake of argument. that our sample mean difference was 1.5 seconds and
that we then determined from the sampling distribution that the probability of a sample
mean ditference as high as 1.5 seconds is .16, (How we determine this probability is not
tmportant here.) Our reasoning could then go as follows: “If we did in fuct sample from pop-
ufations with the same meuan. the probability of obtaining a sample meun difference as high
as 1.5 seconds is . [6—that is not a terribly high probability. but it certainly isn’t a low prob-
ability event. Because a sample mean difference at least as great as 1.5 is often obtained
from populations with equal means, we have no reason to doubt that our two samples came
from such populations.”

Alternatively. suppose we obtained a sample mean difference of 10 seconds und calcu-
lated from the sampling distribution that the probability of a sample mean difference as
large as 10. when the population means are equal. was only .0008. Our argument could then
go like this: ~ff we did obtain our samples from populations with equal means. the proba-
bitity of obtaining a sample mean ditfference as large as 10 is only .0008-—an unhkely event.
Because a sample mean ditference that large is unlikely to be obtained trom such popula-
tions. we can reasonably conclude that these samples probably came from populations with
different means.”

[t is important to realize the steps in this example because the logic is typical of most
tests of hypotheses. The actual test consisted of several stages:

1. We wanted to test the hypothesis, often called the research hypothesis, that people
backing out of a parking space take Jonger when someone is waiting.

13

. We obtamed random samples of behaviors under the two conditions.

3. We set up the hypothesis (called the null hypothesis, /) that the samples were drawn
from populations with the same means. This hypothesis states that leaving times do not
depend on whether someone is watting.

4. We then obtained the sampling distribution of the difterences between means under the
assumption that £, (the null hypothesis) is true (i.e.. we obtained the sampling distribu-
tion of the differences between means when the population means are equal.)

5. Given the sampling distribution. we calculated the probability of a mean difference ar
least ay lurge as the one we actually obtained between the means of our two samples.

6. On the basis of that probability. we made a decision: either to reject or fail to reject Hy.

Because H; states the means of the populations are equal. rejection of Hy represents a

belief that they are unequal. although the actual value of the ditference in population

means remains unspecified.
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The preceding discussion is oversimplified in the sense that in practice we also would
need to consider (either directly or by estimation) the value of 2, the population variance(s).
and N, the sample size(s). But again, those are specifics we can deal with when the time comes.
The logic of the approach is representative of the logic of most, if not all, statistical tests.

1. Begin with a research hypothesis.
2. Set up the null hypothesis.

3. Construct the sampling distribution of the particular statistic on the assumption that
H, is true.

4. Collect some data.
5. Compare the sample statistic to that distribution.

6. Reject or retain Hy, depending on the probability. under Hy. of a sample statistic as
extreme as the one we have obtained.

The First Stumbling Block

[ probably slipped something past you there. and you need to at least notice. This is one of
the very important issues that motivates the fight over hypothesis testing. and it is something
that you need to understand even if you can’t do much about it. What T imagine that you
would like to know is "what is the probability that the null hypothesis (drivers don’t take
longer when people are waiting) is true given the data we obtained?” But that is not what [
gave you. and it is not what Fam going to give you in the future. I gave you the answer to a
different question. which is “what 1s the probability that I would have obtained these data
given that the null hypothesis is true”?” [ don’t know how to give you an answer to the ques-
tion you would like to answer—not because [ am a terrible statistician, but because the an-
swer is much too ditficult in most situations. However. the answer that [ did give you is still
useful—and 1s used all the time. When the police ticket a driver for drunken driving because

he cun’tdrive in a straight line and can’t speak coherently, they are saving, “if he were sober,
he would not behave this way. Because he behaves this way, we will conclude that he is not

sober.” This logic remains central to most approaches to hypothesis testing.

As we have seen. the concept of the null hypothesis plays a crucial role in the testing of
hypotheses. People frequently are puzzied by the fact that we set up a hypothesis that is
directly counter to what we hope to show. For example, if we hope to demonstrate the research
hypothesis that college students do not come from a population with a mean self-confidence
score of 100, we immediately set up the null hypothesis that they do. Or if we hope to
demonstrate the validity of a research hypothesis that the means (., and pa) of the popula-
tions from which two samples are drawn are ditferent. we state the null hypothesis that the
= 0). {The term “null hypothesis™
is most easily seen in this second example, in which it refers to the hypothesis that the dif-
ference between the two population means is zero. or nulli~—some people call this the nil
nudf. but that complicates the issue too much). We use the null hypothesis for several rea-
sons. The philosophical argument. put forth by Fisher when he first introduced the concept.
is that we can never prove something to be true. but we can prove something to be false. Ob-
serving 3.000 people with two arms does not prove the statement, "Everyone has two arms.”
However. finding one person with three arms does disprove the original statement beyond

population means are the same (or. equivalently, p, —

T
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Section 4.4 The Null Hypothesis 91

any shadow of a doubt. Although one might argue with Fisher's basic position—and many
people have—the null hypothesis retains its dominant place in statistics.

A second und more practical reason for employing the null hypothesis is that it provides
us with the starting poiat for any statistical test. Consider the case in which you want to
show that the mean self-confidence score of college students is greater than 100. Suppose
further that you were granted the privilege of proving the truth of some hypothesis. What
hypothesis are you going 1o test? Should you test the hypothesis that w = 101, or maybe the
hypothesis that . = 112, or how about p. = [137 The point is that in almost all research in
the behavioral sciences we do not have a specific alternative (research) hypothesis in mind.
but without one we cannot construct the sampling distribution we need. (This was one of the
arguments raised against the original approach of Neyman and Pearson because they often
spoke as if there were a specific alternative hypothesis to be tested. rather than just the dif-
fuse negation of the null) However. if we start off by assuming Hy: p = 100, we can im-
mediately set about obtaining the sampling distribution for w = 100 and then, if our data are
convineing. reject that hypothesis and conclude that the mean score of college students is
greater than 100, which ts what we wanted to show in the first place.

Statistical Conclusions

When the data differ markedly from what we would expect if the null hypothesis were true.
we simply reject the null hypothesis and there is no particular disagreement about what our
conclusions mean-—we conclude that the null hypothesis is false. (This is not to suggest that
we still don’t need to tell our readers more about what we have found.) The interpretation is
murkier and more problematic, however. when the data do not lead us to reject the null
hypothesis. How are we to interpret a nonrejection? Shall we say that we have “proved™ the
null hypothesis to be true? Or shall we claim that we can “accept” the null, or that we shall
“retain” it or that we shall “withhold judgment™?

The problem of how to interpret a nonrejected null hypothesis has plagued students in
statistics courses for more than 50 years. and it will probably continue to do so (but see Sec-
tion 4.10). The idea that it something is not false then it must be true is too deeply ingrained
in common sense to be dismissed lightly.

The one thing on which all statisticians agree is that we can never claim to have
“proved” the null hypathesis. As was pointed out. the fact thar the next 3,000 people we
meet all have two arms certainly does not prove the null hypothesis that all people have two
arms. [n fact, we know that many perfectly normal people have fewer than two arms. Fail-
ure to reject the null hypothesis often means that we have not collected enough dara.

The issue is easier to understand if we use a concrete example. Wagner. Compas. and
Howell (1988) conducted a study to evaluate the effectiveness of a program for teaching
high-school students to deal with stress. If this study found that students who patticipate in
such a program had significantly fewer stress-related problems than did students i a con-
trol group who did not have the program. then we could. without much debate. conclude
that the program was eftective. However. if the groups did not differ at some predetermined
level of statistical significance. what could we conclude?

We know we cannot conclude from a nonsignificant difference that we have proved that
the mean of a population of scores of treatment subjects is the same as the mean of a popu-
lation of scores of control subjects. The two treatments may lead to subtle differences that
we were not able to identity conclusively with our relatively small sample of observations.

Fisher's position was that a nonsignificant result is an inconclusive result, For Fisher.
the choice was between rejecting a null hypothesis and suspending judgment. He would

have argued that a failure to find a significant difference between conditions could result
from the fact that the students who participated in the program handled stress only sfighily
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better than did control subjects, or that they handled it only slightly less well, or that there ) shapes of these distributions would be ditferent. but [ am deliberately ignoring such issues
was no ditterence between the groups. For Fisher, a failure to reject Hy merely means that sample statistics in this chapter.) The statistics just mentioned usually are referred to as sample statistics be-

our data are insufficient to allow us to choose among these three alternatives; therefore, we cause they describe characteristics of samples. There is a whole different class of statistics

must suspend judgment. You will see this position return when we shortly discuss a proposal test statistics called test statistics, which are associated with specific statistical procedures and which

by Jones and Tukey (2000).

A slightly different approach was taken by Neyman and Pearson (1933), who took a
much more pragmatic view ot the results of an experiment. In our example, Neyman and
Pearson would be concerned with the problem faced by the school board, who must decide
whether to continue spending money on this stress-management program that we are pro-
viding for them. The school board would probably not be impressed if we told them that our
study was inconclusive and then asked them to give us money to continue operating the pro-
gram until we had sufficient data to state confidently whether or not the program was bene-
ficial (or harmful). In the Neyman-Pearson position, one either rejects or accepts the null
hypothesis. But when we say that we
that we take it to be proven as true, We simply mean that we will act as if it is true, at least
until we have more adequate data. Whereas given a nonsignificant result, the ideal school
board from Fisher's point of view would continue to support the program until we finally
were able to make up our minds. the school board with a Neyman—-Pearson perspective
would conclude that the available evidence is not sufficient to defend continuing to fund the
program, and they would cut off our funding.

This discussion of the Neyman—Peuarson position has been much oversimplified, but it
contains the central issue of their point of view. The debate between Fisher on the one hand
and Neyman and Pearson on the other was a lively (and rarely civil) one, and present prac-
tice contains elements of both viewpoints. Most statisticians prefer to use phrases such as
“retain the null hypothesis™ and fail to reject the null hypothesis™ because these make clear
the tentative nature of a nonrejection. These phrases have a certain Fisherian ring to them.
On the other hand, the important emphasis on Type Il errors (failing to reject a false null
hypothesis). which we will discuss in Section 4.7, is clearly an essential feature of the
Neyman—Pearson school. If you are going to choose between two alternatives (accept or
reject). then you have to be concerned with the probability of falselv accepting as well as
that of falsely rejecting the null hypothesis. Fisher would never accept a null hypothesis in
the first place. so he did not need to worry much about the probability of accepting a false
one." We will return to this whole question in Section 4.10, where we will consider an

cept” a null hypothesis, however, we do not mean

alternative approach. after we have developed several other points. First, however, we need
to consider some basic information about hypothesis testing so as to have a vocabulary and
an example with which to go further into hypothesis testing. This information is central to
any discussion of hypothesis testing under any of the models that have been proposed.

4.5 Test Statistics and Their Sampling Distributions

We have been discussing the sampling distribution of the mean. but the discussion would
have been essentially the same had we dealt instead with the median, the variance. the
range, the correlation coefficient (as in our course evaluation example). proportions (as in
our hom-honking example), or any other statistic you care to consider. (Technically, the

" Excellent discussions of the diftferences between the theories of Fisher on the one hand, and Neyman and
Pearson on the other can be Tound in Chapter 4 of Gigerenzer. Swijtink, Porter. Daston, Beatty, & Kriiger (1989).
Lehman 11993). and Oakes 119901, The central issues involve the concept of probability, the idea of an infinite
population or infinite resampling. and the choice of a eritical value. among other things. The controversy is far
from a simple one

i
H
H

have their own sampling distributions. Test statistics are statistics suchas ¢, . and x >, which
vou may have run across in the past. (If vou are not familiar with them, don’t worry—we
will consider them separately in later chapters.) This is not the place to go into a detatled ex-
planation of any test statistics. [ put this chapter where it is because [ don't want readers to
think that they are supposed to worry about technical issues. This chapter is the place, how-
ever, to point out that the sampling distributions for test statistics arc obtained and used in
essentially the same way as the sampling distribution of the mean.

As an illustration, consider the sampling distribution of the statistic 7, which will be dis-
cussed in Chapter 7. For those who have never heard of the ¢ test, it is sufficient 1o say that
the ¢ test is often used, among other things. to determine whether two samples were drawn
from populations with the same means. Let py and po represent the means of the popula-
tions from which the two sumples were drawn. The null hypothesis is the hypothesis that the
two population means are equal. in other words, Hy: iy = s (or Wl — po = 0). If we were
extremely patient, we could empirically obtain the sampling distribution of ¢ when Hy is
true by drawing an infinite number of pairs of samples, all from two identical populations,
calculating ¢ tor each pair of samples (by methods to be discussed later), and plotting the
resulting values of 7. In that case, f{y must be true because we forced it to be true by drawing
the samples from identical populations. The resulting distribution is the sampling distribu-
tion of 1 when Hy is true. If we later had two samples that produced a particular value of 1,
we would test the null hypothesis by comparing our sample 1 to the sampling distribution of
. We would reject the null hypothesis if our obtained ¢ did not look like the kinds of r values
that the sampling distribution told us to expect when the null hypothesis is true.

I could rewrite the preceding paragraph, substituting x °, or F, or any other test statistic
in place of r. with only minor changes dealing with how the statistic is calculated. Thus. you
can see that all sampling distributions can be obtained in basically the same way (calculate
and plot an infinite number of statistics by sampling from identical populations).

4.6 Using the Normal Distribution to Test Hypotheses

et oo

Much ot the discussion so far has dealt with statistical procedures that you do not yet know
how to use. [ did this deliberately to emphasize the point that the logic and the calculations
behind a test are two separate issues. However. we now can use what you already know
about the normal distribution to test some simple hypotheses. In the process, we can deal
with several fundamental issues that are more easily seen by use of a concrete example.
An important use of the normal distribution is to test hypotheses, either about individual
observations ar about sample statistics such as the mean. In this chapter. we will deal with
individual observations, Jeaving the question of testing sample statistics until later chapters.
Note. however. that in the usual case we test hypotheses about sample statistics such as the
mean rather than about individual observations. [ am starting with an example of an indi-
vidual observation because the explanation is somewhat clearer. Because we are dealing
with only single observations, the sampling distribution invoked here will be the distribution
of individual scores (rather than the distribution of means or differences between means).
The basic logic is the same, and we are using an example of individual scores only because
it simplifies the explanation and is something with which you have had experience.
Psychologists who study neurological functiontng have a battery of tests at their dis-
posal. A common test is simple finger tapping speed, which is useful for diagnosing hidden
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decision-making

brain damage. (For example. people with brain damage to the dorsal lateral frontal lobes are
especially slow in the speed of finger tapping, but are often unaware of their loss of behav-
ioral competency.) For a simple example, assume we know that the mean rate of finger tap-
ping of normal healthy adults is 100 taps in 20 seconds, with a standard deviation of 20, and
that tapping speeds are normally distributed in the population. We already know that the tap-
ping rate is slower among people with dorsal lateral frontal lobe damage. Suppose that an
individual has just been sent to us who taps at a rate of 70 taps in 20 seconds. s his score
sufficiently below the mean for us to assume that he did not come from a population of neu-
rologically healthy people” This situation is diagrammed in Figure 4.2, in which the arrow
indicates the location of our piece of data (the person’s score).

B
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Figure 4.2 Location of 4 person’s tapping score on a distribution of scores of
neurologically healthy people

The logic of the solution to this problem is the same as the logic of hypothesis testing in
general. We begin by assuming that the individual's score does come from the population of
healthy scores. This is the null hypothesis (Hy). If Hy is true, we automatically know the
mean and the standard deviation of the population from which he was supposedly drawn
(100 and 20, respectively). With this information, we are (n a position to calculate the prob-
ability that a score as fow as his would be obtained from this population. If the probability
is very low. we can reject Hy and conclude that he did not come from the healthy popula-
tion. Conversely. if the probability is not particularly low, then the data represent a reason-
able result under Hy, and we would have no reason to doubt its validity and thus no reason
to doubt that the person is healthy. Keep in mind that we are not interested in the probabil-
ity of a score equal to 70 (which, because the distribution is continuous, would be infinitely
small) but, rather, in the probability that the score would be at least as low as (i.e., less than
or equal to) 70.

The individual had a score of 70. We want to know the probability of obtaining a score
ar least as low as 70 1f Hy is true. We already know how to find this—it is the area below
70 in Figure 4.2. All we have to do is convert 70 to a 7 score and then refer to Appendix 2
(page 694).

X - 70-100 30

z —_— = =-15
@ 20 20

From Appendix 2. we can see that the probability of a z score of —1.5 or below is .0668.
(Locate £ = 1.50 in the table and then read across to the column headed *Smaller Portion.”)

At this point, we have to become involved in the decision-making aspects of hypathe-
sis testing. We must decide whether an event with a probability of .0668 is sufficiently
unlikely to cause us to reject Hy. Here we will fall back on arbitrary conventions that have

rejection level
(significance
level)

rejection region

Section 4.7 Type [and Type (T Ertors 95

been established over the years. The rationale tor these conventions will become clearer as
we go along. but for the time being keep in mind that they are merely conventions. One
convention calls for rejecting M, 1f the probability under Hy is less than or equal to .05
(p < .03). and another convention——one that is more conservative with respect to the prob-
ability of rejecting Hy—calls for rejecting Hy whenever the probability under Hy is less than
orequal to .01, These values of .03 and .01 are often referred to as the rejection level. or the
significance level, of the test. (When we say that a difterence is statistically significunt at
the .05 level. we mean that a ditference that large would occur less than 3% of the time if
the null were true.) Whenever the probability obtained under Hy ts less than or equal to our
predetermined significance level. we will reject Ay, Another way of stating this is to say that
any outcome whose probability under Hy is less than or equal to the significance level falls
in the rejection region because such an outcome leads us to reject H.

For the purpose of setting a standard level of rejection for this book. we will use the
.05 fevel of statistical significance. keeping in mind that some people would consider this
level w be o lenient.” For our particular example, we have obtained a probability value of
1 = 0668, which obviously 1s greater than .03. Because we have specified that we will not
reject Ay unless the probability of the data under A, is less than .05, we must conclude that
we have no reason to decide that the person did not come from a population ot healthy

people.

More specifically. we conclude that a finger-tapping rate of 70 reasonably could have
come from 4 population of scores with a mean equal to 100 and a standard deviation equal
to 20, [t iy important to note that we have not shown that this person is healthy. but only that
we have insufficient reason 1o believe that he is not. It may be that he is just acquiring the
disease and therefore is not quite as different from normal as is usual for his condition.
Or maybe he has the disease at an advanced stage but just happens to be an unusually fast
tapper. This is an example of the tact that we can never say that we have proved the null
hypothests. We can conclude only that this person does not tap sutficiently slowly for an
iliness. it any. to be statistically detectable.

4.7 Typel and Type Il Errors

Whenever we reach a decision with a statistical test. there is always a chance that our deci-
ston is the wrong one. Although this is tue of aimost all decisions. statistical or otherwise.
the statistician has one point in her favor that other decision makers normally lack. She not
only makes a decision by some rational process. but she can also specify the conditional
probabilities of a decision’s being in error. In everyday life. we make decisions with only
subjective feelings about what is probably the right choice. The statistician, however, can
state quite precisely the probability that she would make an erroneously rejection of Hy if it
were true. This ability to specify the probability of crroneously rejecting a true Hy follows
directly from the logic of hypothesis testing.

* The particular view of 1y pothesis testing described here is the classical one that a null hypothesis is rejected if
the probahility of obtained the data when the null hy pothesis is true is less than the predefined significance level,
and not rejected if that probability s greater than the significance level. Currently, a substantial body of opinion
folds that steh cut-and-dried rules are inappropriaie and that more attention should be paid ta the probability
value itsell. [n other words, the classical approach tusing a .03 rejection levell would declare p = 031 and p =
130 0 be tequallyy “statistically nonsigaificant” and 7 048 and p = 0003 to he (equally) “staustcally
cant.” The alternative view would think of g7 = 051 as “nearly stgniicant”™ and p = .0003 as “very signiticant.
Although this view has much to recommend it especially given current trends to move away from only reporting
statistical significance of results, it will not be wholeheartedly udopted here. Most computer programs do print out
exact probubility levels, und those values. when interpreted judiciously. can be useful. The difficulty comes in
defining whal is meant by “interpreted judictously.”

fi-
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Type Hl error
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Consider the finger-tapping example, this time ignoring the score of the individual sent
to us. The situation is diagrammed in Figure 4.3, in which the distribution is the distribution
of scores from healthy subjects. and the shaded portion represents the lowest 5% of the dis-
tribution. The actual score that cuts off the lowest 3% is called the critical value. Critical
values are those values of X (the variable) that describe the boundary or boundaries of the
rejection region(s). For this particular example. the critical value is 67.

[(X)
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Figure 4.3 Lowest 5% of scores from clinically healthy people

It we have a decision rule that says to reject Hy whenever an outcomne falls in the lowest
5% of the distribution, we will reject H, whenever an individual's score falls in the shaded
area: that is. whenever a score as Jow as his has a probability of .03 or less of coming from
the population of healthy scores. Yet by the very nature of our procedure, 5% of the scores
from pertectly healthy people will themselves fall in the shaded portion. Thus, if we actu-
ally have sampled a person who is healthy. we stand a 5% chance of his score being in the
shaded tail of the distribution. causing us erroneously (o reject the null hypothesis. This kind
ol error {rejecting Hy when it is actually true) is called a Type T error, and its conditional
probability (the probability of rejecting the null hypothesis given that it is true) is designated
as e (alpha). the size of the rejection region. In the future. whenever we represent a proba-
bility by a, we will be referring to the probability of a Type I error.

Keep in mind the “conditional™ nature of the probability of a Type I error. I know that
sounds like jargon. but what it means is that you should be sure you understand that when
we speak of a Type Ferror we mean the probability of rejecting Hy, given that it is true. We
are not saying that we will reject Hy on 3% of the hypotheses we test. We would hope to run
experiments on important and meaningful variables and. therefore, to reject Hy often. But
when we speuak of a Type [ error, we are speaking only about rejecting Hy in those situations
in which the oull hypothesis happens to be true.

You might feel thut a 5% chance of making an error is too great a risk to take and sug-
gest that we make our criterion much more stringent, by rejecting, for example, only the
lowest 1% of the distribution. This procedure is perfectly legitimate, but realize that the
more stringent you make your criterion, the more likely you are 1o make another kind of
error—fuiling to reject Hy when it is false and &, is true. This type of error is called a
Type It error, and its probability is symbolized by B (beta).

The major difficulty of Type II ervors stems from the fact that if #, is false. we almost
never know what the true distribution (the distribution uander H)) would look like for the
population from which our data came. We know only the distribution of scores under H,.
Put in the present context, we know the distribution of scores from healthy people but not
from nonhealthy people. It may be that people suffering from some neurological disease
tap. on average. considerahly more stowly than healthy people, or it may be that they tap, on
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Figure 4.4  Areus corresponding to o and B for tapping speed example

average. only a little more slowly. This situation is illustrated in Figure 4.4, in which the dis-
tribution labeled £y represents the distribution of scores from healthy people (the set of ob-
servations expected under the null hypothesis). and the distribution labeled H, represents
our hypothetical distribution of nonhealthy scores (the distribution under ;). Remember
that the curve H, is only hypothetical. We really do not know the location of the nonhealthy
distribution. other than that it is lower (slower speeds) than the distribution of Hy. (I have
arbitrarily drawn that distribution with a mean of 80 and a standard deviation of 20.)

The darkly shaded portion in the top half of Figure 4.4 represents the rejection region.
Any observation falling in that area (i.e.. to the left of about 67) would lead to rejection of
the null hypothesis. 1 the null hypothesis is true. we know that our observation will fall in
this area 3% of the time. Thus. we will make a Type I error 3% of the time.

The lightly shaded portion in the bottom half of Figure 4.4 represents the probability (31
of a Type [I ervor. This is the situation of a person who was actually drawn from the non-
healthy population but whose score was not sufficiently low to cause us to reject H.

In the particular situation illustrated in Figure 4.4, we can actually calculate by using
the normal distribution to calculate the probability of obtaining a scote grearer than 67 {the
critical value) if p = 80 and ¢ = 20. The actual calculation is not important for your
understanding of 3: because this chapter was designed specifically to avoid calculation. f
will simply state that this probability (i.e.. the area labeled 3) 15 .74, Thas. for this example,
74% of the time when we have a person who is actually nonhealthy (i.e.. H, is actually true).
s medical diagnosti-

we will make a Type If error by failing to reject £, when it s false (
cians, we leave a lot to be desired).

From Figure 4.4. you can see that if we were to reduce the level of a (the probability of
a Type Lerror) from .05 to .01 by moving the rejection region to the lett. it would reduce the
probability of Type I errors but would increase the probability of Type I errors. Setting « at
.01 would mean that 3 = .908. You can see that there is room for debate about what level of
significance to use. The decision rests primarily on your opinion concerning the relutive
importance of Type T and Type II errors for the kind of study you are conducting. It it were
important to avoid Type I errors (such as telling someone that he has a disease when he
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Table 4.1 Possible outcomes of the decision-making process

True State of the World

Decision HyTrue H, False

Reject Hp Type lerrorp =«
Don't reject Hy

Correct decision p = 1 - B = Power

Correct decision p = | -« Type Il errorp =B

does not), then you would set a stringent (i.e.. small) level of «. If, on the other hand, you
want to avoid Type Il errors (telling someone to go home and take an aspirin when in fact he
needs immediate treatment). you might set a tairly high level of a. (Setting @ = .20 in this
example would reduce @ to .44.) Unfortunately. in practice most pecple choose an arbitrary
level of a. such as .05 or .01, and simply ignore B. In many cases, this may be all you can
do. (You will probably use the alpha level that your instructor recommends.) In other cases,
however. there is much more you can do, as you will see in Chapter 8.

I should stress again that Figure 4.4 is purely hypothetical. [ was able to draw the figure
only because T arbitrarily decided that speeds of nonhealthy people were normally distrib-
uted with a mean of 80 and a standard deviation ot 20. The calculated answers would be dif-
ferent if [ had chosen to draw it with a mean of 70 or a standard deviation of 10. In most
everyday situations, we do not know the mean and the variance of that distribution and can
make only educated guesses, thus providing only crude estimates of B. In practice, we can
selecta value of w under H, that represents the mininuun difference we would like to be able
to detect because larger differences will have even smaller Bs.

From this discussion of Type I and Type 1l errors, we can summarize the decision-
making process with a simple table. Table 4.1 presents the four possible outcomes of an
experiment. The items in this table should be self-explanatory. but there is one concept—
power—that we have not yet discussed. The power of a test is the probability of rejecting
Hy when it is actually false. Because the probability of fuiling to reject a false Hp is B. then
power must equal ! — 3. Those who want to know more about power and its calculation will
find power covered in Chapter 8.

4.8 One- and Two-Tailed Tests

The preceding discussion brings us to a consideration of one- and two-tailed tests. In our
tapping example. we knew that nonhealthy subjects tapped more slowly than healthy sub-
Jects: therzefore. we decided to reject H, only if a subject tapped too slowly. However.
suppose our subject had tapped 180 times in 20 seconds. Although this is an exceedingly
uniikely event to observe from a healthy subject, it did not fali in the rejection region. which
consisted solefv of low rates. As a result, we find ourselves in the position of not rejecting
Hy in the face of a piece of data that is very unlikely, but not in the direction expected.

The question then arises as to how we can protect ourselves against this type of situation
(if protection is thought necessary). The answer is to specify before we run the experiment
that we are going to reject a given percentage (say 5%) of the extreme outcomes, both those
that are extremely high and those that are extremely low. But it we reject the lowest 3% and the
highest 3%. then we would reject Hy a total of 10% of the time when it is actuall§ true, that
is. a = .10. We are rarely willing to work with « as high as .10 and prefer to see it set no
higher than .05. The way to accomplish this is to reject the lowest 2.5% and the highest
2.5%. making a total of 5%.

one-tailed
(directional) test

two-tailed
{(nondirectional)
test
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The situation in which we reject Hy for only the lowest (or only the highest) tapping
speeds is referred to as a one-tailed, or directional. test. We make a prediction of the di-
recticn in which the individual will differ from the mean. and our rejection region is located
in only one tail of the distribution. (That makes sense when we know that brain damage is
only associated with slow tapping speeds.) When we reject extremes in both tails. we have
what is called a two-tailed, or nondirectional, test. It is important to keep in mind that
although we gain something with a two-tailed test (the ability to reject the null hypothesis
for extreme scores in either direction), we also lose something. A score that would fall in the
5% rejection region of a one-tailed test may not fall in the rejection region of the corre-
sponding two-tailed test because now we reject only 2.5% in each tail.

In the finger-tapping example. the decision between a one- and a two-tailed test might
seem reasonably clear-cut. We know that people with a given diseuse tap more slowly:
therefore. we care only about rejecting Hy for low scores—high scores have no diagnostic
importance. In other situations, however, we do not know which tail of the distribution is
important (or both are). and we need to guard against extremes in either tail. The situation
might arise when we are considering a campaign to persuade children not to start smoking.
We might find that the campaign leads to a decrease in the incidence of smoking. Or. we
might find that campaigns run by adults to persuade children not © smoke simply muke
smoking more attractive and exciting, leading to an increase is the number of children
smoking. In either case, we would want (o reject Hq.

In general. wo-tailed tests are far more cormon than one-tailed tests for several
reasons. The investigator may have no idea what the data will look like and therefore has to
be prepared for any eventuality. Although this situation Is rare. it does oceur in some
exploratory work.

Another common reason for preferring two-tailed tests is that the investigutors are rea-
sonably sure the data will come out one way but want o cover themselves in the event that
they are wrong. This type of situation arises more often than you might think. (Carefully
formed hypotheses have an annoying habit of being phrased in the wrong direction, for rea-
sons that seem so obvious after the event.) The smoking example is a case in point, where
there is some evidence that poorly contrived antismoking campaigns actually do more harm
than good. A frequent question that arises when the data may come out the other way around
is, "Why not plan to run a one-tailed test and then. if the data come out the other way. just
change the test to a two-tailed test?” This kind of question comes from people who have no
intention of being devious but who just do not fully understand the logic of hypothests test-
ing. If you start an experiment with the extreme 5% of the left-hand tail as your rejection re-
gion and then turn around and reject any outcome that happens to fall in the extreme 2.5%
of the right-hand tail, you are working at the 7.5% level. In that situation. you will reject 5%
of the outcomes in one direction (assurning that the data fall in the desired tail). and you are
willing also 1o reject 2.3% of the outcomes in the other direction (when the data are in the
unexpected direction). There is no denying that 5% + 2.5% = 7.5%. To put it another way.
would you be willing to flip a coin for an ice cream cone if [ have chosen “heads” but also
reserve the right to switch to “tails” after I see how the coin lands? Or would you think it fair
of me to shout, “Two out of three!” when the coin toss comes up in your favor? You would
object to both of these strategies, and you should. For the same reason. the choice between
4 one-tailed test and a two-tailed one is made before the data are collected. It is also one of
the reasons that two-tailed tests are usually chosen.

Although the preceding discussion argues in favor of two-tailed tests. and although in
this book we gencrally confine oursetves to such procedures. there are no hard-and-fast
rules. The final decision depends on what you already know about the relative severity of
different kinds of errors. 1t is important to remember that with respect to a given tail of a dis-
tribution, the difference between a one-tailed test and a two-tailed test s that the latter just
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uses a different cutoft, A two-tailed test at o = .03 Is more liberal than a one-tailed test at
a= 007

It you have a sound grasp of the logic of testing hypotheses by use of sampling distrib-
utions, the remainder of this course will be refatively simple. For any new statistic you en-
counter, you will need to ask only two basic questions:

1. How and with which assumptions is the statistic calculated?

2. What does the statistic’s sampling distribution look fike under #,?

[t you know the answers to these two questions, you can accomplish your test by calcu-
lating the test statistic for the data at hand and comparing the statistic to the samplhing dis-
tribution. Because the relevant sampling distributions are tubled in the appendices. all you
really need to know is which test is appropriate for a particular situation and how to calcu-
late its test statistic. (Of course, there is more to statistics than just hypothesis testing, so
perhaps I'm doing a bit of overselling here. There is a great deal to understanding the field
of statistics beyond how to caleulate. and evauluate. a specific statistical test. Calculation is
the easy part, especially with modern computer software.)

4.9 What Does It Mean to Reject
the Null Hypothesis?

conditionatl
probabilities

One of the commeoen problems that even well-trained researchers have with the null hypoth-
esis is the confusion over what rejection really means. I mentioned this earlier when I dis-
cussed the fact that we calculate the probability of the data given that the null is true. rather
than the probability of the null being true given the data. Suppose that we test a null
hypothesis about the difference between two population means and reject it at p = 043,
There 1s a temptation to say that such a result means that the probabitity of the null being
true is 045, But that is nor what this probability means. What we have shown is that if the
nuldl hypothesis were true, the probability of obtaining a difference between means as great
as the difference we found is only .045. That is quite different from saying that the proba-
bility that the null is true is .045. What we are doing here is confusing the probability of the
hypothesis given the data. and the probability of the data given the hypothesis. These are
called conditional probabilities, and will be discussed in Chapter 5. The probability of
(045 that we have here is the probability of the data given that £y s true, written p(D | Hy)—-
the vertical line is read “given.” It iy not the probability that H, is true given the data, written
p(HI D). The best discussion ol this issue that [ have read is in an excellent paper by
Nickerson (2000). Let me illustrate my major point with an example.

+ . . .

One of the reviewers of an earlier edition of this book made the case for ewe-tailed tests even more strongly:
“leis my (mmarity1 belief that what an investigator expecrs fo be e has absolutely no hearing whatsoever on the
issue of one- versus two-tailed tests. Nature coubdn’t care less what psychologists” theories predict, and will often

show patterns/trends in the opposite direction. Since our goal is 10 know the truth (not 1 prove we are asiufe at
predicting). vur tests must always allow tor testing ok directions. Usay abways do two-tailed tests. and if you are
worried ubout B, jack the sample size up a bit w otfsct the loss in power™ (D, Brudley. personal communication.
F9831 Lam persanally tnelined towird this puint of view. Nature (s notoriously tickle, or else we are notoriousy
inept at prediction. On the vther hand. a second reviewer takes exception o this position. While acknowledging
that Bradley's point is well considered. Rodgers. engaging in a bit of hvperbale. argues, “To generate a theory
about how the world works that implies an expected direction of an etfect. hut then to hedge one’s bet by putting
some fup to 4 of the rejection region in the tail other than that predicted by the theory. strikes me as both scientit-
tcally dumb and slightly unethical. . . . Theory generation and theory testing are much closer to the proper goal of
science than truth searching, and running one
sonal communication. 19861, Neithwr Br

ailed tests is guite consistent with those goals™ (J. Rodgers, per-

v aor [would aceept the judgment of being “scientifically dumb and
slightly unethical.” but [ preseated the twvo positions in juxtaposition because doing so gives you a flavor ol the
debate. Obviousty there is room for disagreement on this issue,
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Suppose that I create a computer-generated example where [ know for a fact that the
data for one suniple came from a population with a mean of 54.28. and the data for a second
sample came from a population with a mean of 54.25. (It is very easy to use a program like
SPSS to generate such samples.) Here [ know for a fuct that the null hypothesis is false. In
other words. the probability that the null hypothesis is true is .00—that is. p(Hy) = 00
However. if [ have two small samples [ might happen to get a result such as 54.26 and 54.36.
and that result would have a very high probability of occurving even in the situation where
the null hypothesis is true and both means were, say. 54.28. Thus. the probability of the data
aiven a true null hypothesis might be |73, for example. and yet we know that the probability
Ihu( the null is really true is exactly .00. (Using probability terminclogy, we can write ptHy)
= .00 and p(D | H,) = .75). Alternatively. assume that [ created a situation where I know that
the null is true. For example, I set up populations where both means are 54.00. It is easy to
imagine getting samples with means of 53 and 54.5. [f the null is really true, the probability
of g;t[ing means this difference may be .33, for example. Thus. the probability that the null
is (I‘uc is fixed. by me. at [.00. yet the probability of the data when the null is true is .33
(Using probability terminology again, we can write p(Hy) = 1.00 and p{D{Hy) )
Notice that in both of these cuses there is a serious discrepancy between the probability of
the null being true and the probability of the data given the null. You will see several
instances like this throughout the book whenever | sample data trom known populations.
Never confuse the probability value associated with a test of significant with the probability
that the nuil hypothesis is true. They are very different things.

4.10 An Alternative View of Hypothesis Testing

What | have presented so far about hypothesis testing is the traditional approach. It is found
in virtually every statistics text, and you need to be very familiar with it. However, there
has recently been an interest in ditferent ways of looking at hypothesis testing., and a new
approach proposed by Lyle Jones and John Tukey {2000) avoids some of the problems of the
traditional approach.

We will hegin with an example comparing two population means that is developed
further in Chapter 7. Adams, Wright. and Lohr (1996) show ed a group ot homophobic het-
erosexual males and a group of nonhomophobic heterosexual males a videotape of sexually
explicit erotic homosexual images, and recorded the resulting level of sexual arousal in Ihs
participants. The researchers were interested in seeing whether there was a difference in
sexual arousal hetween the two categories of viewers. (Notice that 1 didn't say which group
thev expected to come vut with the higher mean. just that there would be a difference.)

The traditional hypothesis testing approach would set up the null hypothesis that
Wy = ko where iy is the population meun for homophobic males. and ., 1s the population
mean for nonhomophobic males. The traditional alternative {two-tailed) hypothesis is that
pn # p. Many people have pointed out that the null hypothesis in such & Sitgatlon Is never
soine to be true. [t is not reasonable to believe that if we had a population of all homopho-
Eic nhmleS their mean would be exactly equal to the mean of the population all nonhomo-
phobic males to an unlimited number of decimal places. Whatever the means are, they will
certainly differ by ar least some trivial amount. SO we know before we begin that the null
hypothesis is false. and we might ask ourselves why we are testing the nuil in the first place.
{Many people have asked that question.) ‘

Jones and Tukey (2000) and Harris (2003) have argued that we really have three possi-
ble hypotheses or conclusions we could draw—Jones and Tukey speak primarily of "c«>Q—
clusions.” One is that Wy < . another is that p, > p,. and the third is that py = pq. This
third hypothesis is the traditional null hypothesis. and we have just said that it is never going
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to be true when means are carried to enough decimal places. These three hypotheses lead to
three courses of action. If we test the first (py, < ) and reject it. we conclude that homo-
phobic males are more aroused than nonhomophobic males. If we test the second (n > n)
and reject it. we conclude that homophobic males are less aroused than nonhomophobic
males. I we cannot reject either of thuse hypotheses, we conclude that we have insufticient
evidence to make a choice—the population means are almost certainly different. but we
don’t know which iy the larger.

The difference between this approach and the traditional one may seem minor. but it is
important. In the first place. when Jones and Tukey tell us something, we should definitely
listen. These are not two guys who just got out of graduate school-—they are two very highly
respected statisticians, (If there were a Nobel Prize in statistics, John Tukey would have won
it.) In the second place, this approach acknowledges that the null is never strictly true, but
that sometimes the data do not aliow us to draw conclusions about which mean is larger. So,
instead of relying on fuzzy phrases like “fail to reject the null hypothesis™ or “retain the null
hypothesis.” we simply do away with the whole idea of a null hypothesis and just conclude,
“we can't decide whether iy, is greater than . or is fess than w,”" In the third place. this
looks as il we are running two one-tailed tests, but with an important ditference. In a tradi-
tional one-tailed test. we must specily in advance which tail we are testing. If the result falls
in the extreme of that tail. we reject the null and declare that py, < . for example. If the
result does not fall in that tail, we must not reject the null, no matter how exireme it is in the
other tail. But that is not what Jones and Tukey are suggesting. They do not require you to
specity the direction of the difference before you begi

Jones and Tukey are suggesting that we do not specify a tail in advance. but that we col-

lect our data and determine whether the result is extreme in either wil, If it is extreme in the
lower tail. we conclude that wy, <7 .. If it is extreme in the upper tail, we conclude that
Wi > pa- And i neither of those conditions applies. we dectare that the data are insufficient
to make a choice. (Notice that [ didn't once use the word “reject”™ in the last few sentences.
['said “conclude.” The difference is subtle. but T think that it is important.)

But Jones and Tukey go a bit further and alter the significance level. First. we know that
the probability that the null is true ts .00. {In other words. ply = ) = 0.) The difference
may be trivially small, but there is a ditference nonetheless. We cannot make an error by not
rejecting the null because saying that we don’t have enough evidence is not the same as in-
correctly rejecting a hypothesis. As Jones and Tukey wrote.

With this formulation. a conclusion is in error only when it is “ua reversal,” when it
asserts one direction while the (unknown) truth is in the other direction. Asserting that
the direction is not yet established may constitute a wasted opportunity, but it is not an
error. We want to control the rate of error. the reversal rate. while minimizing wasted
opportunity. that is. while minimizing indefinite results. (p. 412)

So one of two things is true—either wy, > Mo OF phi <3 g 1 oy 2w, Is actually true.
meaning that homophobic males are more aroused by homosexual videos. then the only
crror we can make is to erroneously conctude the reverse—that py, < o And the probabil-
ity of that error is. at most. .025 if we were to use the traditional two-tailed test with 2.5%
of the arew in each tail. If. on the other hand. py, < M. the only error we can make is 1o con-
clude that puy, > . the probability of which is also at most .025. Thus. it we use the tradi-
tional cutotts of a two-tailed test. the probability of a Type L error is at most .023. Jones and
Tukey go on to suggest that we could use the cutoffs corresponding to 3% in cach tail (the
traditional two-tailed test at = .10 and still have only a 5% chance of mahing a Type [
error. Although this is true. 1 think that you will find that muny traditionally trained col-
leagues. including journal reviewers. will start getting a bit “squirrelly™ at this point. and
you might not want to push your fuck.
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[ wouldn't be surprised if at this point students are throwing up their hands with one of
two objections. First would be the claim that we are just “splitting hairs.” My answer to that
is "no, we're not”" These issues have been hotly debated in the literature, with some people
arguing that we abandon hypothesis testing altogether (Hunter, 1997). The Jones-Tukey
formulations make sense of hypothesis testing and increase statistical power if you follow
all their suggestions. (I believe that they would prefer the phrase “drawing conclusions™ to
“hypothesis testing.”) Second. students could very well be asking why I spent many pages
laying out the traditional approach and then another page or two saying why it is ail wrong.
I tried to answer that at the beginning-—the traditional approach is so ingrained in what we
do that you cannot possibly get by without understanding it. It will lie behind most of the
studies you read, and your colleagues will expect that you understand it. That there is an
alternative, and better, approach does not release you from the need to understand the tradi-
tional approach. And unless you change « levels, as Jones and Tukey recommend, you will
be doing almost the same things but coming to more sensible conclusions.

4.11 Effect Size

Earlier in the chapter [ mentioned that there was a movement afoot 1o go beyond simple sig-
nificance testing to report some measure of the size of an effect. In fact, some professional
journals are already insisting on it. I will expand on this topic in some detail later, but it is
worth noting here that I have already sneaked a measure of effect size past you, and I'1l bet
that nobody noticed. When writing about waiting for parking spaces to open up. I pointed
out that Ruback and Juieng (1997) found a difference of 6.88 seconds, which is not trivial
when you are the one doing the waiting. 1 could have gone a step further and pointed out
that, because the standard deviation of waiting times was 14.6 seconds. we are seeing a dif-
ference of nearly half a standard deviation. Expressing the difference between waiting times
in terms of the actual number of seconds or as being “more than half a standard deviation™
provides a measure of how large the effect was—and a very reputable measure. There is
much more to be said about effect sizes, but at least this gives you some idea of what we are
talking about.

I should say one more thing on this topic. One of the difficulties in understanding the
debates about hypothesis testing is that for years statisticians have been very sloppy in se-
lecting their terminology. Thus, for example, in rejecting the null hypothesis, it is very com-
mon for researchers to report that they have found a “significant difference.” Most readers
could be excused for taking this to meaun that the study has found an “important difference.”
but that is not at all what is meant. When statisticians and researchers say “significant,” that
is shorthand for “statistically significant.” It merely means that the difference, even if trivial.
is not due to chance. The recent emphasis on effect sizes is intended to go beyond
statements about chance, and tell the reader something. though perhaps not much, about
“importance.” [ will try in this book to insert the word “statistical™ before “significant.”
when that is what [ mean, but [ can’t promise to always remember.

4.12 A Final Worked Example

A number of years ago the mean on the verbal section of the Graduate Record Exam (GRE)
was 489 with a standard deviation of 126. The statistics were based on all students taking
the exam in that year, most of whom were native speakers of English. Suppose we have an
application from an individual with a Chinese name who scored particularly low (e.g.. 22(?).
If this individual were a native speaker of English, that score would be sufficiently low for
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aduate school unless the rest of the documentation is con-
siderably better. I, however, this student were not a native speaker of English. we would
probably disregard the low score entircly. on the grounds that it is a poor reflection of his
abilities.

[ will stick with the traditional approach to hypothesis testing in what follows. though
vou should be able to see the difference between this and the Jones and Tukey approach. We

us to question his suitability for g

have two possible choices here. namely that the individual is or is not a native speaker of
English. If he is @ native speaker. we know the mean and the standard deviation of the
population from which his score was sampled: 489 and 126. respectively. If he is not a
native speaker. we have no idea what the mean and the standard deviation are for the popu-
lation from which his score wus sampled. To help us to draw a reasonable conciusion about
this person’s status, we will set up the null hypothesis that this individual is a native speaker.
or. more precisely, he was drawn from a population with a mean of 489 Hy 1 = 489, We
will identify A, with the hypothesis that the individual 1s not a native speaker (u # 489).
(Note that Jones and Tukey would [simultancously] test Hy: p < 489 and A p > 489, and
would associate the nuil hypothesis with the conclusion that we don't have sufficient data to
make a decision.)

For the traditional approach we now need o choose between a one-tailed and a two-tatled

Excrcises 105

4.13 Back to Course Evaluations and Rude Motorists

We started this chapter with a discussion of the relationship between how students evaluate
a course and the grade they expect to receive in that course. Our second example fooked at
the probability of moterists honking their horns at low- and high-status cars that did not
move when a traffic light changed 1o green. As you will see in Chapter 9. the first example
uses a correlation coefficient to represent the degree of relationship. The second example
simply compares two proportions. Both examples can be dealt with using the techniques
discussed in this chapter. In the first case. if there were no relationship between the grades
and ratings, we would expect that the true correlation in the population of students is .00,
We simply set up the null hypothesis that the population correlation is .00 and then ask
about the probability that a sample of observations would produce a correlution as large as
the one we obtained. [n the second case, we set up the null hypothesis that there is no dif-
ference between the proportion of motorists in the population who honk at tow- and high-
status cars. Then we calculate the probability of obtaining a difference in sample propor-
tions as large as the one we obtained {in our case, .34) if the null hypothesis is true. I do not
expect you to be able to run these tests now, but you should have a general sense of the way

i i i TRE e will s v we do tearn to run them.
test. In this particular case. we will choose a one-taited test on the grounds that the GRE is we will set up the problem when t

¢iven in English, and it is difficult to imagine that a population of nonnative speakers would
have a mean higher than the mean of native speakers of English on a test that is given in Key Terms

English. (Nore: This does not mean that non-English speakers may not. singly or as a popu- P PSS

Jation. outscore English speakers on a fairly administered test. It just means that they are

X S Sampling error (Introduction) Sample statistics (4.5) a (alpha) (4.7)
unlikely to do so. expecu}l!'\' as a group. when both groups m?\c the test mvknghsh,) Because Hypothesis testing (4.1) Test statistics (4.5) Type [l error (47
we have chosen a one-tailed test, we have set up the alternative hypothesis as £ 0 <U489. ’ . .
Before we can apply our statistical procedures to the data at hand. we must make one Sampling distributions (+.2) Decision making (+.6) B (beta) t4.7)
additional decision. We have to decide on a level of significance for our test. In this case, i Sampling distribution of the differences Rejection level (significance Power (4.7)
[ have chosen to run the test at the 3% level, instead of at the 1% level. because [ am using between means (+4.2) level) (4.6) One-tailed test (directional test) {(+.8)

Research hypothesis (4.3) Rejection region (4.6) Two-tailed test (nondirectional

Null hypothesis (Hp) (4.3) Critical value (4.7 test) (+.8)

o= .03 ay o standard for this book and also because T am more worried about a Type [l error
than Lam about a Type Lerror. It I make a Type [error and erroneously conclude that the stu-
dent is not a native speaker when in fact he is, it is very likely that the rest of his credentials
will exclude him from further consideration anyway, [f [ make a Type If error and do not
wdentify him as a noanative speaker. I am doing him a real injustice.

Alternative hypothesis (Hy) (4.4 Type 1 error (4.7) Conditional probabilities (+.9)

Next. we need 1o caleulate the probability of a student receiving a score at least as low Exercises
as 220 when Hy o= 489 is true. We first caleulate the - score corresponding to a raw e A
score of 220;
4.1 Suppose [ told you that last night's NHL hockey game resutted in o score of 26-13. You
- X-n _ Qzl)_* 4@ _ -9 a3 would probubly decide that I had misread the paper and wus discussing something other thun
’ o - 126 B a hockey score. In ettect, you have just tested and rejected a null hypothesis.
We then go 1o tables of 7 to calculate the probability that we would obtain a 7 value less than a. What was the null hypothesis?
orequal to =2.13. From Appendix 7. we find that this probability is .017. Because this prob- b Outline the hypothesis-testing procedure that you have just applied.
ability is less than the 5% significance level we chose to work with, we will reject the null 42 For the past year,  have spent about $4.00 a day for lunch. give or take a quarter or so.
hypothesis on the grounds that itis too unlikely that we would obtain a score as low as 220 a4 Draw a rough sketch of this distribution of daily expenditures.
it we had sampted an observation from a population of native speakers of English who had T wixhout}unkma at the bill, T paid for my funch with a $5 bill and received $.75 in
taken the GRE. Instead. we will conclude that we have an observation from an individual change. should [ v:orry that [ was overcharged?
who is not a native speaker ot English. o . . .
It iy important to note that i reje :ting the null hypothesis. we Id have made a Type | ¢ Explain the logic involved in your answer t part (b)
portant to note that in rejecting the null hypothesis. we cou yp ) o . . .
error. We know that if we do sample speakers of English. 1.7% of them will score this low. y 4.3 What would be a Type [ error in Exercise 4.27
It is possible that our applicant was o native speaker who just did poorly. All we are saying 4.4 What would be a Type {l error in Exercise +.27
is that such an event is sufticiently unlikely that we will place our bets with the alternative ] 4.5 Using the example in Exercise 4.2, describe what we mean by the rejection region and the
hypothesis. critical value.
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4.6

+.7

4.8
4.9

+4.10

411
+.12
413
414
415
4.16
417
418

4.22

Why miight I want to adopt a one-tailed test in Exercise 4.2 and which tail should I choose?
What would happen it I chose the wrong tail?

A recently admitted class of graduate students at a large state university has a mean Gradu-
ate Record Exany (GRE) verbal score of 630 with a standard deviation of 30. (The scores are
reasonably normally distributed.) One student. whose mother just happens to be on the board
of trustees. was admitted with a GRE score of 490. Should the local newspaper editor. who
loves scanduls. write a scathing editorial about favoritism?

Why is such a small stundard deviation reasonable in Exercise 4.77

Why might (or might noty the GRE scores be normally disuributed for the restricted sample
(admitted studentsy in Exercise 4.77

[magine that you have just invented a statistical test called the Mode Test to test whether the
muode of a population is some value (e.g.. 100). The statistic (M) is calculated as

~ Sample mode

Sample ra

Describe how you could obtain the sumpling distribution of M. (Note: This is a purely ficti-
tious statistic as far as [ am aware.y

tn Exercise 4.10. what would we call M in the terminology of this chapter?

Deseribe a sttuation in daily life in which we routinely test hypotheses without realizing it
In Exercise 4.7, what would be the alternative hypothesis (H))?

Denne “sampling error”

What is the difference between o “distribution” and a “sampling distribution™?

How would decreasing o atfect the probabilities given in Table 4,17

Give two examples ot research hypotheses. and state the corresponding null hypotheses

For the distribution in Figure 4.4, I'suid that the probability of a Type [ error (B) 15 .74, Show
how this probability was obtained.

Rerun the caleulations in Exercise 418 tora = 01

in the example in Section 4.12. how would the test have ditfered if we had chosen to run a
two-tailed test?

Describe the steps you would go through to develop the example given in this chapter about
the course evaluations. [n other words. how might vou go about determining whether there
truly is a celationship between grades and course evaluations?

Describe the steps you would go through to test the hypothesis that motorists are ruder to
tellow drivers who drive low-status cars than to those who drive high-status cars.

Discussion Questions

423

+.24

In Chapter 1. we discussed a study of allowances for fourth-grade children. We considered
that study

in in the exercises tor Chapter 2. where you generated data that might have
been found in such a study.

a. Consider how you would go about testing the research hyvpothesis that boys receive more
allowance than girls do. What would be the aull hypothesis?

b, Would you use a one- or a two-taited test?

¢ What results might lead you to reject the null hypothests and what might lead you to
retain it?

d. What single thing might you do to muke this study more convincing?

Simon and Bruce (19915, in demonstrating a different approach to statistics called “Resam-

pling statistics.™ tested the null hypothesis that the mean price of liquor (in (961) for the 16

426
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“monopoly™ states. where the state owned the liguor stores. was different from the meun
price in the 26 “private” states. where liguor stores were privately owned. (The means were
$4.35 and $4.84. respectively, giving you some hint at the ettects of inflation.) For technical
reasons. several states don't conform to this scheme and could not be analyzed.

4. What is the nult hypothesis that we are really testing”?

b, Whar label would you apply to $4.35 and $4.847

¢, If these are the only states that qualify for our consideration, why are we testing a null
hyputhesis in the first place?

4 Can you think of u situation where it does make sense t testa null hypothesis here?

Discuss the different ways that the traditional upproach o hypothesis testing and the Jones

and Tukey approach would address the question(s) inherent in the example of waiting times

for a parking space.

What effect might the suggestion that experimenters report etfect sizes have on the conclu-

sions we draw from future research studies in psychology?

* The home page containiny information on this approach is available at hip:/iwww resample.com/. Dwill discuss
resampling statistics at some tength in Chapter (8





