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regression to simply predict ¥ for a given set of data), we could come to quite different
conclusions for the two data sets. Darlington (1968) presents an interesting discussion of this
issue and concludes that B; has only limited utility as a measure of “importance.” An even
stronger stand is taken by Cooley and Lohnes (1971), who point out that our estimate of B
ultimately relies on our estimates of the elements of the intercorrelation matrix. Because this
matrix contains p + p(p — 1)/2 intercorrelations that are all subject to sampling error,
Cooley and Lohnes suggested that we must be exceedingly careful about attaching practical
significance to the regression coefficients.

As an illustration of the variability of the regression coefficients, a second set of 50
courses, the same set as used for cross-validation, was drawn from the same source as that
for the data in Table 15.1. In this case, R? was more or less the same as it had been for the
first example (R? = .710), but the regression equation looked quite different. In terms of
standardized variables,

Z; = 0.371 Teach + 0.113 Exam + 0.567 Knowledge — 0.27 Grade + 0.184 Enroll

If you compare this equation with the one found from Exhibit 15.1, it is clear that there
are substantial differences in some of the values of B;.

Another measure of importance, which has much to recommend it, is the squared serni-
partial correlation between predictor i and the criterion (with all other predictors partialled
out)—that is, rg; 53 _,- Darlington (1968) refers to this measure as the “usefulness” of a
predictor. As we have already seen, this semipartial correlation squared represents the
decrement in R? that would result from the elimination of the ith predictor from the model
(or the increment that would result from its addition). When the main goal is prediction
rather than explanation, this is probably the best measure of “importance.” Fortunately, it is
easy to obtain from most computer printouts, because

2 - Fi(l - Rg.]23:,.p)
i) T T p—1

where F; is the F test on the individual B; (or b;) coefficients. (If your program uses ¢ tests
on the coefficient, F = r2.) Because all terms except F; are constant fori = 1... p, the F;s
order the variables in the same way as do the squared semipartials and, thus, can be used to
rank order the variables in terms of their usefulness.

Darlington (1990) has made a strong case for not squaring the semipartial correlation
when speaking about the importance of variables. His case is an interesting one. However,
whether or not the correlations are squared will not affect the ordering of variables. (If you
want to argue persuasively about the absolute importance of a variable, you should read
Darlington’s argument.)

One common, but unacceptable, method of ordering the importance of variables is to
rank them by the order of their inclusion in a stepwise regression solution. The problem with
this approach is that it ignores the interrelationships among the variables. Thus, the first vari-
able to be entered is entered solely on the strength of its correlation with the criterion. The
second variable entered is chosen on the basis of its correlation with the criterion after par-
tialling the first variable but ignoring all others. The third is chosen on the basis of how it
correlates with the criterion after partialling the first two variables, and so on. In other words,
each variable is chosen on a different basis, and it makes little sense to rank them according
to order of entry. To take a simple example, assume that variables 1, 2, and 3 cormelate .79,
.78, and .32 with the criterion. Assume further that variables | and 2 are correlated .95,
whereas | and 3 are correlated .20. They will then enter the equation in the order 1, 3, and
2, with the last entry being nonsignificant. But in what sense do we mean to say that variable
3 ranks above variable 2 in importance? I would hate to defend such a statement to a
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reviewer—actually, [ would be hard pressed even to say what I meant by importance in this
situation. A similar point has been made well by Huberty (1989). For an excellent discussion
of measures of importance, see Harris (1985, pp. 79ff).

15.12 Using Approximate Regression Coefficients

I have pointed out that regression coefficients frequently show substantiat fluctuations from
sample to sample without producing drastic changes in R. This might lead someone to sug-
gest that we might use rather crude approximations of these coefficients as a substitute for the
more precise estimates obtained from the data. For example, suppose that a five-predictor
problem produced the following regression equation:

7 =924085X, +2.1X; — 0.74X; + 3.6X, — 2.4Xs
We might ask how much loss we would suffer if we rounded these values to
P =10+ 11X +2X2 — 1X; +4X, — 2Xs

The answer is that we would probably lose very little. Excellent discussions of this problem
are given by Cohen et al. (2003), Dawes and Corrigan (1974), and Wainer (1976, 1978).

This method of rounding off regression coefficients is more common than you might
suppose. For example, the college admissions officer who quantifies the various predictors
he has available and then weights the grade point average twice as highly as the letter of
recommendation is really using crude estimates of what he thinks would be the actual
regression coefficients. Similarly, many scoring systems for the Minnesota Multiphasic
Personality Inventory (MMPI) are based on the reduction of coefficients to convenient inte-
gers. Whether the use of these diagnostic signs produces results that are better than, worse
than, or equivalent to the use of the usual linear regression equations is still a matter of
debate. A dated but very comprehensive study of this question is presented in Goldberg
(1965). Rather than undermining our confidence in multiple regression, I think the fact that
rounded off coefficients do nearly as well (sometimes better if we are applying them to new
data) speaks to the robustness of regression. It also suggests that you not put too much faith
in small differences in coefficients.

15.13 Mediating and Moderating Relationships

Mediation

mediating
relationship

One of the most frequently cited papers in the psychological literature related to multiple re-
gression during the past 20 years has been a paper by Baron and Kenny (1986) on what they
called the moderator-mediator distinction. The important point for both moderating and
mediating relationships is that a third variable plays an important role in governing the
relationship between two other variables.

A mediating relationship is what it sounds like—some variable mediates the relationship
between two other variables. For example, take a situation in which high levels of care from
your parents leads to feelings of competence and self-esteem on your part, which, in tum,
leads to high confidence when you become a mother. Here, we would say that your feelings
of competence and self-esteem mediate the relationship between how you were parented and
how you feel about mothering your own children.
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Baron and Kenny (1986) laid out several requirements that must be met before we can
speak of a mediating relationship. Consider the diagram in Figure 15.5 as being representa-
tive of a mediating relationship that we want to explain.

Mediator

2
<>

Independent Dependent
variable variable
c

Figure 156.6 Diagram of a mediated relationship

The predominant relationship that we want to explain is labeled “c” and is the path from
the independent to the dependent variable. The mediating path has two parts: “a.” the path
connecting the independent variable to the potential mediator, and “b,” the path connecting
that mediator to the dependent variable.

Baron and Kenny argued that for us to claim a mediating relationship, we need to first
show that there is a significant relationship between the independent variable and the medi-
ator. (If the mediator is not associated with the independent variable, then it couldn’t medi-
ate anything.) The next step is to show that there is a significant relationship between the
mediator and the dependent variable, for reasons similar to those for the first requirement.
Then we need to show that there is a significant relationship between the independent and
dependent variable. .

These three conditions require that the three paths (a, b, and c) are all individually sig-
nificant. The final step consists of demonstrating that when the mediator and the indepen-
dent variable are used simultaneously to predict the dependent variable, the previously sig-
nificant path between the independent and dependent variables (c) is now greatly reduced,
if not nonsignificant. Maximum evidence for mediation would occur if ¢ drops to 0. [ have
never seen a path go away completely. Most likely to happen is that ¢ becomes a weaker,
though perhaps still significant, path.

Leerkes and Crockenberg (1999) were interested in studying the relationship between
how children were raised by their own mothers, and their later feelings of maternal self-
efficacy when they, in turn, became mothers. The sample consisted on 92 mothers of
S-month old infants. The researchers expected to find that high levels of maternal care when
the mother was a child translated to high levels of self-efficacy when that child later became
a mother. But Leerkes and Crockenberg went further, postulating that the mediating variable
in this relationship is self-esteem. They argued that high levels of maternal care lead to high
levels of self-esteem in the child and that this high self-esteem later translates into high
levels of self-efficacy as a mother. This relationship is diagrammed in Figure 15.6.

Self-esteem

/ \
Maternalcare ______ Self-efficacy

4

Figure 15.6 Diagram of mediation in the development of self-efficacy
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.The initial conditions of Baron and Kenny (1986) can be tested by looking at the simple
correlations among the variables. These are shown here, as produced by SPSS.

Correlations
Pearson Correlation
§ month
Maternal care | Seff-esteem | efficacy
Maternal care 1.000 403 272"
Seif-esteem 403" 1.000 .380*
5 month efficacy 272" 380" | 1.000

** Carrelation is significant at the 0.01 level (2-tailed).

Exhibit 156.4a Correlations between variables in mediation example

Here, we can see that maternal care is correlated with self-esteem and with self-efficacy,
and that self-esteem is also correlated with self-efficacy. These relationships satisfy Baron
and Kenny’s basic prerequisites. The next step is to use both self-esteem and maternal care
as predictors of self-efficacy. This is shown in Exhibit 15.4b.

Coefficients?
Unstandardized Standardized
Coefficients Coefficients Correlations
Zero-

Modet B Std. Eror Beta t Sig. order Part
1 {Constant) 3.260 A4 23199 .000

maternal care 12 .042 272 2.677 009 272 272
2 {Constant) 2.929 173 16.918 000

maternal care | 5.817E-02 0 142 1.334 .185 272 130

self esteem 147 048 33 3.041 .003 380 295

2 Dependent Variable: 5 month efficacy

Exhibit 15.4b

Multiple regressions for mediation example

The first model in the previous table uses maternal care as the sole predictor. The sec-
ond model has added self-esteem as a predictor. You can see that when we add self-esteem
to maternal care, which was clearly significant when used alone to predict self-efficacy,
maternal care is no longer significant (+ = 1.334, p = 0.185). This is evidence that self-
esteem is serving a mediating role between maternal care and self-efficacy. The output also
shows what SPSS calls the “part correlation,” but which the rest of us call the semipartial
correlation. The semipartial correlation between maternal care and self-efficacy is .130,
whereas the simple correlation (zero-order) between maternal care and self-efficacy was
.27. It remains significant, as we can see by the s test on self-esteem, but has dropped
noticeably.

These results support Leerkes and Crockenberg’s hypothesis that self-esteem played a
mediating role between maternal care and self-efficacy. Caring parents seem to produce
children with higher levels of self-esteem, and this higher self-esteem translates into posi-
tive feelings of self-efficacy when the child, in turn, becomes a mother.
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11'1 this situation, Leerkes and Crockenberg were fortunate to have a situation in which
the direct path from maternal care to self-efficacy dropped to nonsignificance when self.
esteem was added. Unfortunately, that does not always happen. (Actually, it seems to

happen relatively infrequently.) The more common result is that the direct path becomes E

less important, though it remains significant. There has been considerable discussion abo
what to do in this situation, but there is a relatively simple answer, developed by Sobu:
(1982), that was referred to by Baron and Kenny. ©
When we have a situation in which the direct path remains significant, though at a lowe;
value, one way to test for a mediating relationship is to ask whether the complete mediati .
path from independent variable to mediator to dependent variable is significant. To do th:, :
we need to know the regression coefficients and their standard errors for the two paths in thse

mediating chain. We will soon also need the re; i
gression of Self-esteem on M.
that table follows. " Matemal care. s

Coefficients®

Model

Unstandardized Standardized

Coefficients Coefficients Correlation

Zero-

B Std. Error Beta t Sig. order Partial Part

1

(Constant)
pbi maternal care

2257 294 7.687 .000
.364 .087 403| 4478 000 403 403 403

2 Dependent Variable: self esteem

Exhibit 15.4c Regression of self-esteem on maternal care

The important statistics from the two regressions are shown in Table 15.6. Because SPSS
does nf)t report the standard error of beta, we need to calculate it. The ¢ statistic given in these
tables is exlh;r the unstandardized regression coefficient () divided by its standard error, or
the standardized regression coefficient divided by its standard error. Thus, we can solve '

B B _ 0.403

t=— g = — = —— =
55 = T as 00

Similarly for the path from Self-esteem to Self-efficacy, partialling Maternal care, we have

B B 0323
= —; Sp=—= 0=
5 RS T 3ger 0106

These results yield Table 15.6.

Tat?le 15.6 Regression coefficients and standard errors for two parts of
mediating path

Path a Path b
Maternal Self- Self- Self-
Care > Esteem Esteem > Efficacy
Be 0.403 Bs 0.380
Sa 0.096 Sp 0.098
t 4.18* t 3.89*

relationships
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‘Then the regression coefficient for the path from Maternal care — Self-esteem —> Self-
efficacy is equal to By x B = 0.403 x 0.323 = 0.130, where a and b refer to the relevant
paths. (Path ¢ is the direct path from Maternal care to Self-efficacy.) In addition, we know
that the standard error of this two-part path is given by

_ 2
Sppy =y B2y + Bpsi — s2sp

where B, and B, are the paths, and 52 and s} are the corresponding standard errors of the
standardized regression coefficients for those paths.'* We can calculate the standard error of
the combined path as

SBBy = /Bt + B2s2 —s2sp = /A03%(.1062) + .3232(.096%) — (.1062)(.096%)
= ~+/0.0027
=0.052
We now know the path coefficient (0.403 x 0.323 = 0.130) and its standard error (0.052),

and we can form a ¢ ratio as

t=%—='—1—39=250
sem 052

Sobel (1982) stated that this ratio is asymptotically normally distributed, which, for large
samples, would lead to rejection of the null hypothesis at o = 0.05 when the ratio exceeds
+1.96. It would presumably have a ¢ distribution on N — 3 df for small samples. In our case,
the path is clearly significant, as we would expect from the previous results. Therefore, we
can conclude that we have convincing evidence of a strong mediating pathway from mater-
nal care through self-esteem to self-efficacy. Because the regression coefficient (and serni-
partial correlation) for the direct path from maternal care to self-efficacy is not significant, the
main influence of maternal care is through its mediating relationship with self-esteem.

There has been considerable discussion in the literature about the best approach to test-
ing mediation. For an online test using three alternative approaches to the standard error, go
to www.unc.edu/~preacher/sobel/sobel.htm. Preacher and Hayes (2004) (available from the
previous website) present SPSS and SAS macros that allow you to using bootstrapping meth-
ods (see Chapter 18) to address this question. A very well-written description of mediation
has been put on the Web by Paul Jose, at the University of Wellington. It can be found
at http://www.vuw,ac.nz/psyc/staff/pauLjose/ﬁles/helpcentre/help7_mediation_example.php.
In additon, Jose offers a free mediation calculator, which runs under Excel, at http://www.
vuw.ac.nﬂpsyc/staff/paul-joselﬁles/medgraph/medgraph.php. 1 have found that very useful,
but be aware that there seems to be minor disagreement between the example and the resuits
of the software, Finally, an extensive comparison of alternative approaches can be found in
MacKinnon, Lockwood, Hoffman, West, and Sheets (2002).

Meoderating Relationships

Whereas a mediating relationship attempts to identify a variable or variables through which
the independent variabie acts to influence the dependent variable, moderating relation-
ships refer to situations in which the relationship between the independent and dependent
variables changes as a function of the level of a third variable (the moderator).

14 There is some disagreement about the exact form of these equation, but the one given here is recommended by
Baron and Kenny. The differences between the various equations tum out to be very minor in practice.
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Wagner, Compas, and Howell (1988) hypothesized that individuals who experience
more stress, as assessed by a measure of daily hassles, will exhibit higher levels of symp-
toms than will those who experience little stress. That is what, in analysis of variance terms,
would be the main effect of hassles. However, the researchers also expected that if a person
had a high level of social support to help deal with his or her stress, symptoms would
increase only slowly with increases in hassles. For those who had relatively little social
support, symptoms were expected to rise more quickly as hassles increased.

Wagner et al. (1988) studied students who were attending an orientation before starting
their first year of collge. Students were asked to report on the number of minor stressful
events (labeled hassles) that they had recently experienced and to report on their perceived
level of social support. Students then completed a symptom checklist about the number of
symptoms they had experienced in the past month. For this part of the study, there were
complete data on 56 participants. These data are available in a file named hassles.dat (from
www.uvm.edu/~dhowell/methods/).

Our first step is to look at the relationships between these variables. The correlation
matrix is shown here.

Correlations
Pearson Correlation

Hassles | Support | Symptoms
Hassles 1.000 -.167 577
Support -167 1.000 -134
Symptoms 577 -134 1.000

** Correlation is significant at the 0.01 level

As expected, there is a significant relationship between Hassles and Symptoms (r =
.577), though Support is not related to Symptoms, or to Hassles. This does not, however,
answer the question that the researchers really wanted to ask, which is whether the relation-
ship between Hassles and Symptoms depends on the degree of social support.

If you think about this question, it starts to sound very much like the question behind an
interaction in the analysis of variance. Actually, it is an interaction, and the way that we will
test for that interaction is to create a variable that is the product of Hassles and Support. (This
is also similar to what we will do in the general linear model approach to the analysis of vari-
ance in the next chapter.) However, if we just multiply Hassles and Support together, there will
be two problems with what results. In the first place, either Hassles or Support or both will be
highly correlated with their product, which will make for multicollinearity in the data. This
will seriously effect the magnitude, and tests of significance, of the coefficients for the main
effect of Hassles and Support. The second problem is that any effect of Hassles or Support in
the regression analysis will be evaluated at a vatue of O for the other variable. In other words,
the test on Hassles will be a test on whether Hassles is related to Symptoms if a participant had
exactly no social support. Similarly, the test on Support would be evatuated for those partici-
pants who have exactly no hassles. Both the problem of multicollinearity and the problem of
evaluating one main effect at an extreme value of the other main effect are unwelcome.

To circumvent these two problems, we are going to center our data. This means that we
are going to create deviation scores by subtracting each variable’s mean from the individual
observations. Now a score of 0 for (centered) Hassles represents someone who has the mean
level of Hassles, which seems an appropriate place to examine any effects of support, and any-
one with a 0 on (centered) support represents someone with a mean level of support. This has
solved one of our problems because we are now evaluating the main effects at a reasonable
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level of the other main effect. It has also helped to solve our other problem because if you look
at the resulting correlations, multicollinearity will have been significantly reduced. .
Having centered our variables, we will then form a product of our centered variables,
and this will represent our interaction term. The means for hassles, support, an‘d symptoms
are 170.1964, 28.9643, and 90.4286, respectively, and the equations for creating centered
variables and their interaction follow. The letter “c” at the beginning of the variable name

indicates that it is centered.

chassles = hassles — 170.1964

csupport = support — 28.9643

chassupp = chassles x csupport

The correlations among the centered (and uncentered) variables are shown in the
following table. I have included the product of the uncentered variables 51.mply to shoYv
how high the correlation between hassles and hassupp is, but we are not going to use this
variable. You can see that by centering the variables we have substantially redu'ced the
correlation between the main effects and the interactions. That was our goal. Not1§e that
centering the variables did not change their correlations with each other—only with the
interaction.

Correlations
Pearson Correlation

Hassles Support Symptoms | hassupp chassles csupport chassupp
Hassles 1.000 -.167 577 910" 1.000™ -.167 -.297:'
Support -.167 1.000 -134 -510" -.167 1.000™ .402"
Symptoms 577 -134 1.000 .585* 577 -1 34" -.391 N
hassupp 910" -.510" 585" 1.000 910" -.510 —.576'
chassles 1.000" -167 577 910" 1.000 -.167 —.297"
csupport -167 1.000™ -134 -510" -167 1 .000" 402
chassupp -.297 402" -39t -576" -.297 402 1.000

** Correlation is significant at the 0.01 leve! (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

We can now examine the interaction of the two predictor variables by including the
interaction term in the regression with the other centered predictors. The dependent variable
is Symptoms. This regression is shown in Exhibit 15.5. (As long as we use the product of
centered variables, it doesn’t matter, except for the intercept, if we use the centered or
uncentered main effects. I prefer the latter, but for no particularly good reason.) '

From the printout, you can see that R? = .388, which is significant. (Without the mt'erac~
tion term, R would have been .334 [not shown].) From the table of regression coefficients,
you see that both the centered Hassles and the interaction terms are significant p= .000 and
.037, respectively), but the social support variable is not significant. By convention, we leav'e
it in our regression solution because it is involved in the interaction, even though the a§socxz-
ated ¢ value shows that deleting that variable wouid not lead to a significant decrease in R*,

Qur regression equation now becomes

¥ = .086chassles + 0.146csupport ~ .005chassupp + 89.585.

We have answered our initial questions (social support does moderate blhe rela‘tionship
between hassles and symptoms), but it would be helpful if we could view this graphically to
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Modef Summary
Std. Error
Adjusted of the
Model R RSquare | RSquare | Estimate
1 6232 388 353 16.8932
2 Predictors: (Constant), CHASSUPP, CHASSLES,
CSUPPORT
ANOVA®
Sum of Mean

Model Squares df Square F Sig.

1 Regression 9427.898 3 3142633 11.012 .000%
Residual 14839.816 52 285.381
Total 24267.714 55

3 Predi {Constant}, chassupp, chassles, csupport
® Dependent Variable: Symptoms
Coefficients?
Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 89.585 2292 39.094 .000
chassies 8.594E-02 019 509 4.473 .000
csupport 146 305 057 479 634
chassupp | -5.06E-03 002 -.262 -2.144 037

2 Dependent Variable: Symptoms

Exhibit 15.5 Regression solution for moderated relationship between hassles
and symptoms

interpret the meaning of the interactive effect. Excellent discussions of this approach can be
fqund in Finney, Mitchell, Cronkite, and Moos (1984), Jaccard, Turrisi, and Wan (1990}, and
Aiken and West (1991). The latter is the authoritative work on moderation. Non;1and
Pél'adeau has a free program called Italassi, available on the web at http://www.simstat.com/.
This program will plot the interaction on your screen and provides a slider so that you can
vary the level of the support variable.

The simplest solution is to look at the relationship between chassles and csymptoms for
fixed levels of social support. Examination of the distribution of csupport scores shows that
they range from about —21 to +19. Thus, scores of —15, 0, and +15 would represent low,
neutral, and high scores on csupport. (You don’t have to be satisfied with these pa.rticula;-
val.ues. you can use any that you like. I have picked extremes to better iflustrate what is
going on.

First, I will rewrite the regression equation, substituting generic labels for the regression
coefficients. I will also substitute chassles x csupport for chassupp because that is the way that
I calculated chssupp. Finaily, I will also reorder the terms a bit just to make life easier.

= bichassles + bycsupport — bchassupp + by
Y = bg + bycsupport + b3(chassles x csupport) + b chassles
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Collecting terms, [ have
¥ = by + bycsupport + chassles(bscsupport + ;)
Next, I will substitute the actual regression coefficients to get
¥ = [89.585 + 0.146csupport] + chassles(—.005csupport + .086)

Notice the first term in square brackets. For any specific level of csupport (e.g., 15), this is
a constant. Similarty, for the terms in parentheses after chassles, that is also a constant for a
fixed level of support. To see this most easily, we can solve for ¥ when csupport is at 15,
which is a high level of support. This gives us

¥ = [89.585 +0.146 x 15] + chassles(—.005 x 15 + .086)
=91.755 +0.011 x chassles
which is just a plain old linear equation. This is the equation that represents the relationship
between ¥ and chassles when social support is high (i.e., 15).
Now we can derive two more simple linear equations, one by substituting O for csupport

and one by substituting ~15.
When csupport = 0,

7 = 89.585 + .086 x chassles
When csupport = —15,
¥ = 87.395 + .161 x chassles

When I look at the frequency distribution of chassles, low, neutral, and high scores are
roughly represented by —150, 0, and 150. So I will next calculate predicted values for
symptoms and low, neutral, and high levels of chassles for each of low, neutral, and high
levels of csupport. These are shown in Table 15.7, and they were computed using the three
previous regression equations and setting chassles at —150, 0, and 150.

Table 15.7 Predicted values of symptoms at varying levels of hassles & support

Centered Support

—15 0 15
Centered —150 63.245 76.685 90.105
0 87.395 89.585 91.755

Hassles 150 111.545 102.485 93.405

If we plot these predicted values separately for the different levels of social support, we
see that with high social support increases in hassles are associated with relatively small in-
creases in symptoms. When we move to csupport = 0, which puts us at the mean level of
support, increasing hassles leads to a greater increase in symptoms. Finally, when we have
Jow levels of support (csupport = —15), increases in hassles lead to dramatic increases in
symptoms. This is shown graphically in Figure 15.7.

The use of interaction terms (e.g., X; X X») in data analysis, such as the problem that we
have just addressed, has become common in psychology in recent years. However, my
experience and that of others has been that it is surprisingly difficult to find meaningful
situations where the regression coefficient for X x Xis significant, especially in experimen-
tal settings where we deliberately vary the levels of X; and Xa. McClelland and Judd (1993)
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Figure 15.7 Plot of symptoms as a function of hassles for different levels of social
support

have investigated this problem and have shown why our standard field study designs have so
little power to detect interactions. That is an important paper for anyone investigating inter-
action effects in nonexperimental research.

15.14 Logistic Regression

logistic
regression

discriminant
analysis

In the past few years, the technique of logistic regression has become popular in the psy-
chological literature. (It has been popular in the medical and epidemiological literature for
much longer.) Logistic regression is a technique for fitting a regression surface to data in
which the dependent variable is a dichotomy.* A very common situation in medicine is the
case in which we want to predict response to treatment, where we might code survivors as
1 and those who don’t survive as 0. In psychology, we might class clients as Improved or
Not Improved, or we might rate performance as Successful or Not Successful. Whenever we
have such a dichotomous outcome, we have a possible candidate for logistic regression.

) But when we have a dichotomous dependent variable, we have at least two other statis-
tical procedures as candidates for our analysis. One of them, which is not discussed in this
text, is discriminant analysis, which is a technique for distinguishing two or more groups
on the basis of a set of variables. The question is often raised about whether logistic regres-
sion is better than discriminant analysis. It isn’t always clear how we might define “better,”
but discriminant analysis has two strikes against it that logistic regression does not. In the
first place, discriminant analysis can easily produce a probability of success that lies outside
the range of 0 and 1, yet we know that such probabilities are impossible. In the second place,
discriminant analysis depends on certain restrictive normality assumptions on the indepen-
dent variables, which are often not realistic. Logistic regression, on the other hand, does not

E LOngt‘lC regression can aiso be applied in situations where there are three or more levels of the dependent vari-
able, which we refer to as a polychotomy, but we will not discuss that method here. .
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produce probabilities beyond 0 and 1, and requires no such restrictive assumptions on the
independent variables, which can be categorical or continuous. Common practice has now
moved away from discriminant analysis in favor of logistic regression.

A second alternative would be to run a standard multiple regression solution, which we
have just been covering, using the dichotomous variable as our dependent variable. In many
situations the results would be very similar. But there are reasons to prefer logistic regres-
sion in general, though to explain those I have to use a simple example.

We will look at actual, though slightly modified, data on variables that we hope to relate
to whether or not the individual responds positively to cancer treatment. The data that we
will consider were part of a study of behavioral variables and stress in people recently diag-
nosed with cancer. For our purposes, we will look at patients who have been in the study for
at least a year, and our dependent variable (Qutcome) is coded 1 for those who have im-
proved or are in complete remission, and O for those who have not improved or who have
died. (Any consistent method of coding, such as 1 and 2, or 5 and 8, would also work.)'6 Out
of 66 cases, we have 48 patients who have improved and 18 who have not. Suppose that we
start our discussion with a single predictor variable, which is the Survival rating (SurvRate)
assigned by the patient’s physician at the time of diagnosis. This is a number between 0 and
100 and represents the estimated probability of survival at 5 years.

One way to look at the relationship between SurvRate and Qutcome would be to simply
create a scatterplot of the two variables, with Outcome on the ¥ axis. Such a plot is given in
Figure 15.8. (In this figure, I have offset overlapping points slightly so that you could see
them pile up. That explains why there seems to be string of points at SurvRate = 91 and
Outcome = 1, for example.) From this plot, we can see that the proportion of people who
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Figure 15.8 Outcome as a function of SurvRate

16 You have to be careful with coding because different programs treat the same codes differently. Some will
code the higher value as success and the Jower as failure, and others will do the opposite. If you have a printout
where the results seem exactly the opposite of what you might expect, check the manual to see how the program
treats the dichotomous variable.
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improve is much higher when the survival rating is high, as we would expect. Assume
for the moment that we had a great many subjects and could calculate the mean Outcome
score (the mean of Os and 1s) associated with each value of SurvRate. (These are called
conditional means because they are conditional on the value of SurvRate.) The conditional
means would be the proportion of people with that value of SurvRate who improved. If we fit
a standard regression line to these data, this would be the regression line that fits the proba-
bility of improvement as a function of SurvRate. But as you can imagine, for many values of
SurvRate, the predicted probability would be outside the bounds 0 and 1, which is impossi-
bie. That alone would make standard linear regression a poor choice. There is a second prob-
lem. If you were to calculate the variances of Outcome for different values of SurvRate, you
would see that they are quite small for both large and small values of SurvRate (because al-
most everyone with low values of SurvRate has a 0 and almost everyone with high values of
SurvRate has a 1). But for people with mid-level SurvRate values, there is nearly an even mix
of Os and 1s, which will produce a relatively larger variance. This will clearly violate our as-
sumption of homogeneity of variance in arrays, to say nothing of normality. Because of these
problems, standard linear regression is not a wise choice with a dichotomous dependent vari-
able, though it would provide a pretty good estimate if the percentage of improvement scores
didn’t fall below 20% or above 80% across all values of SurvRate (Cox & Wermuth, 1992).

Another problem is that the true relationship is not likely to be linear. Differences in
SurvRate near the center of the scale will lead to noticeably larger differences in Outcome
than will comparable differences at the ends of the scale.

Although a straight line won't fit the data in Figure 15.6 well, an S-shaped, or sigmoidal
curve will. This line changes little as we move across low values of SurvRate, then changes
rapidly as we move across middle values, and finally changes slowly again across high values.
In no case, does it fall below 0 or above 1. This line is shown in Figure 15.9. Notice that it is
quite close to the whole cluster of points in the lower left, rises rapidly for those values of
SurvRate that have a roughly equal number of patients who improve and don’t improve, and
then comes close to the cluster of points in the upper right. When you think about how you
might expect the probability of improvement to change with SurvRate, this curve makes sense.
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There is another way to view what is happening that provides a tie to standard linear
regression. If you think back to what we have said in the past about regression, you will recall
that, at least with Iarge samples, a whole collection of Y values correspond to each value of X.
You saw this diagrammatically in Figure 9.5, when I spoke about the assumptions of normal-
ity and homogeneity of variance in arrays. Rather than classifying people as improved or not
improved, suppose that we could somehow measure their disease outcomes more precisely.
Then for a rating of SurvRate = 20, for example, we would have a whole distribution of dis-
ease outcome scores; similarly for people with SurvRate = 30, SurvRate = 40, and so on.
These distributions are shown schematically in Figure 15.10.

Line through means

Cutoff score
for improved

Disease outcome

Figure 15.10 Disease outcome as a function of SurvRate

When we class someone as improved, we are simply saying that his disease outcome
score is sufficiently high for us to say that he falls in that category. He may be .completely
cured, he may be doing quite a bit better, or he may be only slightly improved, but he at
least met our criterion of “improved.” Similarly, someone else may have remained con-
stant, gotten slightly worse, or died, but in any event her outcome was below our decision
point.

What we have here are called censored data. When I speak of censoring, I’m not talk-
ing about some nasty little man with a big black marker who blocks out things he doesn’t
want others to see. We are talking about a situation where something that is above a cutoff
is classed as a success, and something below the cutoff is classed as a failure. It could be
performance on a test, obtaining a qualifying time for the Boston Marathon, or classifying
an airline flight as “on time” or “late.” From this point of view, logistic regression can be
thought of as applying linear regression to censored data. Because the data are censored to
provide only success or failure, we have to fit our model somewhat differently.

The horizontal line across the plot in Figure 15.8 represents a critical value. Anyone
scoring above that line would be classed as improved, and anyone below it would be classed
as not improved. As you can see, the proportion improving, as given by the shaded area of
each curve, changes slowly at first, then much more rapidly, and then slowly again as we
move from left to right. This should remind you of the sigmoid curve we saw in Figure 15.9
because this is what gives rise to that curve. The regression line that you see in Figure 15.10
is the linear regression of the continuous measure of outcome against SurvRate, and it goes
through the mean of each distribution. If we had the continuous measure, we could solve for
this line. But we have censored data, containing only the dichotomous values, and for that

we are much better off solving for the sigmoidal function in Figure 15.9.

We have seen that although our hypothetical continuous variable is a linear function
of SurvRate, our censored dichotomous variable (or the probability of improvement) is
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logit

logit
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not. But a simple transformation from p(improvement) to odds(improvement) to
log odds(improvement) will give us a variable that is a linear function of SurvRate. There-
fore, we can convert p(improvement) to log odds(improvement) and get back to a linear
function. :

Dabbs and Morris (1990) ran an interesting study in which they classified male military
personnel as High or Normal in testosterone, and as either having, or not having, a history
of delinquency. The resuits follow:

Delinquent
Yes No Total
Testosterone N.ormal 402 3614 4016
High 101 345 446

503 3959 4462

For these data, the odds of being delinquent if you are in the Normal group are (fre-
quency delinquent)/(frequency not delinquent). (Using probabilities instead of frequen-
cies, this comes down t0 Pyetinguent/ Paot definguent = p(delinquent)/(1 ~ p(delinquent).) For
the Normal testosterone group, the odds of being delinquent are 402/3614 = .1001. The
odds of being not delinquent if you are in the Normal group is the reciprocal of this, which
is 3614/402 = 8.990. This last statistic can be read as meaning that if you are a male with
normal testosterone levels, you are nearly 9 times less likely to be delinquent than not
delinquent. If we look at the High testosterone group, however, the odds of being delin-
quent are 101/345 = 0.293, and the odds of being not delinquent are 345/101 = 3.416.
Both groups of males are more likely to be not delinquent than delinquent, but that isn’t
saying much, because we would hope that most people are not delinquent. But notice that
as you move from the Normal to the High group, your odds of being delinquent nearly
triple, going from 0.111 to 0.293. If we form the ratio of these odds, we get 0.293/
0.111 = 2.64, which is the odds ratio. For these data, you are 2.64 times more likely to be
delinqgent if you have high testosterone levels than if you have normal levels. That is a
pretty impressive statistic.

We will set aside the odds ratio for a moment and just look at odds. With our cancer data,
we will focus on the odds of survival. (We can return to odds ratios any time we want simply
by forming the ratio of the odds of survival for each of two different levels of SurvRate.)

For what we are doing here (predicting the odds of surviving breast cancer), we will
work with the natural logarithm"’ of the odds, the result is cailed the log odds of survival.
For our example, the log odds of being delinquent for a male with high testosterone,

log odds = log,(odds) = In(odds) = In(0.293) = —0.228

The log odds will be positive for odds greater than 1/1 and negative for odds less than 1/1.
(They are undefined for odds = 0.) You will sometimes see log odds referred to as the logit
and the transformation to log odds referred to as the logit transformation.

Returning to the cancer study, we will start with the simple prediction of Outcome
on the basis of SurvRate. Letting p = the probability of improvement and 1 — p = the

17 . . .
_The natural logarithm of X is the logarithm to the base ¢ of X. In other words, it is the power to which ¢ must be
raised to produce X, where e is the base of the natural number system = 2.718281.

iteratively
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probability of nonimprovement, we will solve for an equation of the form:
log(p/1 — p) = logodds = by + by SurvRate

Here b, will be the amount of increase in the log odds for a one unit increase in SurvRate.
It is important to keep in mind how the data were coded. For the Outcome variable, 1 = no
change or worse, and 2 = improvement. For SurvRate, a higher score represents a better
prognosis. So you might expect to see that SurvRate would have a positive coefficient, being
associated with a better outcome. But with SPSS that will not be the case. SPSS will trans-
form Outcome = 1 and 2 to O and 1, and then try to predict a O (better). Thus, its coefficient
will be negative. (SAS would try to predict a 1, and its coefficient would be positive, though
of exactly the same magnitude.)

In simple linear regression, we had formulae for by and by and could solve the equations
with pencil and paper. Things are not quite so simple in logistic regression, partly because our
data consist of 0 and 1 for SurvRate, rather than the conditional proportions of improvement.
For logistic regression, we are going to have to solve for our regression coefficients iteratively.
This means that our computer program will begin with some starting values for bo and by, see
how well the estimated log odds fit the data, adjust the coefficients, again examine the fit, and
0 on until no further adjustments in the coefficients will lead to a better fit. This is not some-
thing you would attempt by hand.

In simple linear regression, you also had standard F and r statistics testing the signifi-
cance of the relationship and the contribution of each predictor variable. We are going to have
something similar in logistic regression, although here we will use x tests instead of F or £.

In Exhibit 15.6, you will see SPSS results of using SurvRate as our only predictor of
Outcome. I am beginning with only one predictor just to keep the example simple. We will
shortly move to the multiple predictor case, where nothing will really change except that
we have more predictors to discuss. The fundamental issues are the same regardless of the
number of predictors.

I will not discuss all the statistics in Exhibit 15.6 because to do so would take us away
from the fundamental issues. For more extensive discussion of the various statistics, see
Darlington (1990), Hosmer and Lemeshow (1989), and Lunneborg (1994). My purpose
here is to explain the basic problem and approach.

The first part of the printout is analogous to the first part of a multiple regression print-
out, where we have a test on whether the model (all predictors taken together) predicts he
dependent variable at greater than chance levels. For multiple regression, we have an F test,
whereas here we have (several) x2 tests.

Start with the line indicating Beginning Block Number 0, and the row labeled “—2 log
Likelihood” At this point there is no predictor in the model and —2 log likelihood =
77.345746. The is a measure of the overall variability in the data. You might think of it as
being analogous t0 SSiu in the analysis of variance. The quantity —2 log L can be inter-
preted as a x° test on how weil a model with no predictors would fit the data. That X2 is
773457, which is a significant departure from a good fit, as we would expect with no pre-
dictors. (x? would be 0.00 if the fit were perfect.)

For the next block, SPSS adds SurvRate as the (only) predictor and produces another
value of —2 log likelihood = 37.323. This is the amount of variability that remains after
SurvRate is taken into account, and the difference (77.345 — 37.323 = 40.022) represenis a
reduction in x? that can be attributed to adding the predictor. Because we have added one
predictor, this is itself a x? on 1 df, and can be evaluated as such. You can see that the sig-
nificance level is given as .0000, meaning that SurvRate added significantly to our ability to
predict. (You will note that there are lines labeled Model, Block, and Step, and they are all
the same because we have added all of our predictors (1) at the same time.)
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Number of selected cases: 66
Number rejected because of missing data: 0
Number of cases included in the analysis: 66
Dependent Variable Encoding:
Original  Internal
Value Value
100 ¢
200 1
Dependent Variable. QUTCOME Cancer Outcome

Beginning Black Number 0. Initial Log Likelihood Function
-2 Log Likelihood 77.345746
* Constant is included in the model.

Beginning Block Number 1. Method: Enter
Variable(s) Entered on Step Number

1. SURVRATE  Survival Rating by Physician
-2 Log Liketihood 37.323
Goodness of Fit 57.235
Cox & Snell - R*2 455
Nagelkerke - R*2 .659

Chi-Square  df  Significance
Model 40.022 1 .0000
Block 40.022 t .0000
Step 40.022 1 .0000

Variables in the Equation

Variable B SE Wald  df Sig R Exp(B)
SURVRATE -.0812 0193 17.7558 1 .0000 -4513 9220
Constant 2.6836 8113 10.9408 1 0009

Exhibit 15.6 Logistic analysis of cancer survival

The next section of the table contains, and tests, the individual predictors. (Here, there
is only one predictor—SurvRate.) From this section, we can see that the optimal logistic
regression equation is

Log odds = —0.0812 SurvRate + 2.6836

The negative coefficient here for SurvRate indicates that the log odds go down as the physi-
cian’s rating of survival increases. This reflects the fact that SPSS is trying to predict
whether a patient will get worse, or even die, and we would expect that the likelihood of
getting worse will decrease as the physician’s rating increases.

We can also see that SurvRate is a significant predictor, as tested by Wald’s x* =
17.7558 on 1 df, which is significant at p = .0001 (Wald’s x? is a statistic distributed ap-
proximately as the chi-square distribution). You will notice that the x> test, that is, —2 log L,
on the whole model and the Wald x? test on SurvRate disagree. Because SurvRate is the
whole model, you might think that they should say the same thing. This is certainly the case

Section 15.14 Logistic Regression 543

in standard linear regression, where our F on regression is, with one predictor, just the
square of our ¢ on the regression coefficient. This disagreement stems from the fact that they
are based on different estimates of x?. Questions have been raised about the behavior of the
Wald criterion, and Hosmer and Lemeshow (1989) suggest relying on the likelihood ratio
test (—2 log L) instead.

Looking at the logistic regression equation we see that the coefficient for SurvRate is
~0.0812, which can be interpreted to mean that a one point increase in SurvRate will
decrease the log odds of getting worse by 0.0812. But you and I probably don’t care about
things like log odds. We probably want to at least work with odds. But that’s easy—we
simply exponentiate the coefficient. Don’t get excited! “Exponentiate” is just an important
sounding word that means “raise e to that power.” If you have a calculator that cost you
more than $9.99, it probably has a button labeled &*. Just enter —0.0812, press that button,
and you'll have 0.9220. This means that if you increase SurvRate by one point you multiply
the odds of deterioration by 0.9220. A simple example will show what this means.

Suppose we take someone with a SurvRate score of 40. That person will have a log odds of

Log odds = —0.0812(40) + 2.6837 = —0.5643

If we calculate ™03 we will get 0.569. This means that the person's odds of deteriorating
are 0.569, which means that she is 0.569 times as likely to be deteriorate than improve.'®
Now suppose we take someone with SurvRate = 41, one point higher. That person would
have predicted log odds of

Log odds = —0.0812(41) + 2.6837 = —0.6455

And e708455 = 524, So this person’s log odds are ~0.6455 — (—0.5643) = —.0812 lower
than the first person’s, and her odds are ¢~%!2 =0.9220 times larger (0.569 x 0.922 =
.524). Now, 0.922 may not look like a very large number, but if you had cancer a one point
higher survival rating gives you about a 7.8% lower chance of deterioration, and that’s
certainly not something to sneer at.

1 told you that if you wanted to see the effect of SurvRate expressed in terms of odds
rather than log odds you needed to take out your calculator and exponentiate. That isn’t
strictly true here, because SPSS does it for you. The last column in this section is labeled
“Exp (B)” and contains the exponentiated value of b (e~0%812 = 9220).

Although SurvRate is a meaningful and significant predictor of survivability of cancer,
it does not explain everything. Epping-Jordan, Compas, and Howell (1994) were interested
in determining whether certain behavioral variables also contribute to how a person copes
with cancer. They were interested in whether people who experience a high rate of intru-
sive thoughts (Intrusiv) have a poorer prognosis. (People who experience intrusive
thoughts are people who keep finding themselves thinking about their cancer and related
events. They can’t seem to put it out of their minds.) These authors were also interested in
the effect of avoidant behavior (Avoid), which is exhibited by people who just don’t want
to think about cancer and who try to avoid dealing with the problem. [Intrusiv and Avoid
are variables computed from the Impact of Events Scale (Horowitz, Wilner, and Alvarez,
1979).]

Exhibit 15.7 presents the results of using SurvRate, Intrusiv, and Avoid as predictors of
Outcome. You can again see that the overall model fits at better-than-chance levels. With
no predictors, ~2 log likelihood = 77.346. Adding the three predictors to the model

'3 If you don’t like odds, you can even turn this into a probability. Becauses odds = p/(1 — p), then
p = odds/(1 + odds).
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Dependent Variable Encoding:
Original  Internal
Value Value
100 0
200 1
Dependent Variable.. OUTCOME Cancer Outcome

Beginning Block Number 0. Initial Log Likelihood Function
-2 Log Likelihood 77.345746

* Constant is included in the model.

Beginning Block Number 1. Methad: Enter
Variable(s) Entered on Step Number

1. SURVRATE Survival Rating by Physician

INTRUS

AVOID
-2 Log Likelihood 31.650
Goodness of Fit 35.350
Cox & Snefl - R*2 .500
Nagelkerke — R*2 724

Chi-Square  df  Significance
Model 45.695 3 .0000
Block 45.695 3 .0000
Step 45695 3 .0000
Variables in the Equation

Variable B SE. Wald  df Sig R Exp(B)
SURVRATE  -0817  .0211 14.9502 1 .0001 -.4092 9215
INTRUS -0589 0811 .5281 1 4674 .0000 9428
AVOID 1618 0777 4.3310 1 0374 1736 1.1756
Constant 16109 1.1780 1.8700 1 1715

Exhibit 15.7 Outcome as a function of Survival Rate, Intrusive thoughts, and
Avoidance

reduces —2 log likelihood to 31.650, for an improvement of 77.346 — 31.650 = 45.695.
This difference is a x* on 3 df because we have three predictors, and it is clearly significant.
We would have expected a significant model because we knew that SurvRate alone was a
significant predictor. From the bottom section of the table, we see that the Wald x? is sig-
nificant for both SurvRate and for Avoid, but not for Intrusiv. This teil us that people who
exhibit a high level of avoidance behavior do not do as well as those who do less avoiding
(Wald chi-square = 4.3310, p = .0374).'° More specifically, the regression coefficient
for Avoid is 0.1618. This can be interpreted to mean that a one-point increase in Avoid,

"‘In line with Hosmer and Lemeshow's (1989) concern with the validity of the Wald chi-square, we might treat
this test with some caution. However, Wald’s test tends to be conservative, so confidence in this effect is probably
not misplaced. You will see some confirmation of that statement shortly.
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holding the other two variables constant, increases the log odds of deterioration by 0.1618
points. Exponentiating this we obtain ¢%'¢'8 = 1.1756. Thus, a one-point increase in Avoid
multiplies the odds of detereoration by 1.1756, which would increases them.

The Wald x” test on Intrusiv produced a x? of 0.5281, which was not even close to being
significant (p = .4674). Thus, this variable is not contributing to our prediction. If Intrusiv is
not making a significant contribution of predicting Outcome, perhaps it should be dropped
from the model. There is actually a very good reason to do just that. Recall that when we had
only one predictor, our overall x2, as given by —2 log L, was 40.022. We have now added two
more predictors, and our overall x? has become 45.695. The nice thing about x? is that a
difference between two chi-squares is itself distributed as x> on df equal to the difference
between the df for the two models. This means that we can compare the fit of the two mod-
els by subtracting 45.695 — 40.022 = 5.673 and testing this as a x2on3 — 1 =2df Butthe
critical value of x35(2) = 5.99, which means that the degree of improvement between the
two models is not significant. It is no greater than we would expect if we just added a couple
of useless predictors. But we know that Avoid was significant, as well as SurvRate, so what
went wrong?

Well, what went wrong is that we have taken the improvement that we gained by adding
Avoid, and spread it out over the nonimprovement that we gained by adding Intrusiv, and
their average is not enough to be considered significant. In other words, we have diluted the
added contribution of Avoid with Intrusiv. If our goal had been to predict Qutcome, rather
than to test a model that includes Intrusiv, we would have been much better off if we had just
stayed with Avoid. So I would suggest noting that Intrusiv does not contribute significantly
and then dropping back to the two-predictor model witk SurvRate and Avoid, giving us

Log odds = —0.0823 SurvRate + 0.1325 Avoid + 1.1961

Both of these predictors are significant, as is the degree of improvement over the one-
predictor case. The fact that adding Avoid leads to a significant improvement in the model
over the one-predictor case is welcome confirmation of the significant Wald chi-square for
this effect.

The example that was used here included only continuous predictors because that was
the nature of the data set. However, there is nothing to preclude dichotomous predictors,
and they are often used. The nice thing about a dichotomous predictor is that a one-unit
change in that predictor represents a shift from one category to another. For example, if we
used Sex as a predictor and coded Male = 1, Female = 2, then a one-unit increase in Sex
would move us from Male to Female. The exponentiated coefficient for Sex would then
represent the difference in the odds between males and females. Suppose that Sex had been
a predictor in the cancer study and that the coefficient was 0.40. Exponentiating this, we
would have 1.49. This would mean that, holding all other variables constant, the odds of a
female improving are about 1.5 times greater than the odds of a male improving. You will
often see statements in the press of the form “Researchers have concluded that people who
exercise regularly have a 44% lower chance of developing heart problems than those who
do not.” Such statements are often based on the kind of reasoning that we are discuss-
ing here.

There is much more to logistic regression than I can cover in this short introduction, but
perhaps the biggest stumbling block that people experience is the movement to odds and log
odds when we are used to thinking about 0 and 1 or about probabilities. My major purpose
in this section was to get you past that barrier (and to supply you with arguments why you
should consider logistic regression over linear regression or discriminant analysis when you
have a dichotomous dependent variable). Everything else that could be said about logistic
regression is mainly about the technicalities, and you can find those in a number of texts,
particularly the one by Hosmer and Lemeshow (1989).



