Stat 379 Homework 9






Due: Wednesday April 30, 2008

The data set HW9s08.sav contains a long list of variables (42 items from the Bem Sex Role Inventory [BSRI; Bem, 1974]). Conduct an Exploratory Factor Analysis (EFA) to see if they can be reduced to a few underlying factors. The participants were 369 women who rated themselves on these attributes on a scale of 1 ("never true of me") to 7 ("always true of me").

Variables in this dataset:
PARTNO (participant number), HELPFUL (helpful), RELIANT (self-reliant), DEFBEL (defends own beliefs), YIELDING (yielding), CHEERFUL (cheerful), INDPT (independent), ATHLET (athletic), SHY (shy), ASSERT (assertive), STRPERS (strong personality), FORCEFUL (forceful), AFFECT (affectionate), FLATTER (flatterable), LOYAL (loyal), ANALYT (analytical), FEMININE (feminine), SYMPATHY (sympathetic), MOODY (moody), SENSITIV (sensitive to the needs of others), UNDSTAND (understanding), COMPASS (compassionate), LEADERAB (has leadership abilities), SOOTHE (eager to soothe hurt feelings), RISK (willing to take risks), DECIDE (makes decisions easily), SELFSUFF (self-sufficient), CONSCIEN (conscientious), DOMINANT (dominant), MASCULIN (masculine), STAND (willing to take a stand), HAPPY (happy), SOFTSPOK (soft-spoken), WARM (warm), TRUTHFUL (truthful), TENDER (tender), GULLIBLE (gullible), LEADACT (acts as a leader), CHILDLIK (childlike), INDIVID (individualistic), FOULLANG (does not use harsh language), LOVECHIL (loves children), COMPETE (competitive), AMBITIOU (ambitious), GENTLE (gentle).

From the Analyze menu, select Data Reduction and then Factor. Put all of the variables except PARTNO in the Variables box. Then choose the following options:

Rotation button: allows you to move the factor axes around in space to simplify the story you're telling. For this first run no rotation will be used, so make sure that Method is None. Click Continue.

Descriptives button: make sure Initial Solution is selected. This will list all of the factors together with their eigenvalues (the proportion of variance among all the variables that a factor explains). If a rotation is selected, this will give you the factor analysis before rotation. Among other options, you're also able to request the Reproduced correlation matrix, that is, the one that would be produced if your factors are correct, so you can compare it to the real correlation matrix; you don't need to do that for this exercise. Click Continue.

Scores button: request the factor score coefficient matrix, which lists the coefficients each observed variable was multiplied by to arrive at each of the factors (which, remember, are each found by forming a different linear combination of those observed variables). The column of coefficients for one factor is called that factor's "eigenvector," in standard terminology. If you multiply a single subject's variable scores by these coefficients and add them together, you have what their score would be on the factor (or "synthetic variable") you've created. You can have SPSS save these factor scores as new variables in your data window, but you don't need to do that now. Click Continue.

Extraction button: use Principal Components as the method of extracting factors from the data (by far the most common approach). Under Analyze, select Correlation matrix (only analyze the Covariance matrix when you have a specific reason to prefer it). Under Display, select Unrotated Factor Solution to see results before a rotation, if any, is applied. Also select Scree Plot, which will help visualize how many factors are present. Under Extract, select "Eigenvalues Over" and type the number "1" in the box; this corresponds to Kaiser's rule for deciding on the correct number of factors. (Note that other choices are possible, such as Jolliffe's suggestion that factors with eigenvalues over 0.7 are useful, or a personal choice to use only factors with eigenvalues over, say, 2. There is also the option to specify explicitly how many factors you want to uncover, if you have grounds for doing so.) Click Continue.

Options button: allows for different approaches to mising values (here use listwise exclusion as usual) and also allows factor information to be displayed in different ways -- for instance, you might simplify your interpretive job by not distracting yourself with very small coefficients (don't do that now though).

The output first lists the variables in one long column under the heading Communalities. The Initial Communalities (or proportions of variance in each variable explained by the factors) are all 1.0 because when factors are extracted through Principal Components Analysis and all the factors / components are used, all the variance is accounted for. The Extraction Communalities are the proportion of each variable accounted for by the smaller number of factors retained by the Eigenvalues Over "1" criterion. The communalities describe the amount of variance in EACH variable that is explained by ALL the retained factors; since the variables are standardized, the maximum variance to be accounted for is 1.0.

Under the heading Total Variance Explained, the eigenvalues describe the amount of variance in ALL the variables that is explained by EACH factor; if each variable has a variance of 1.0, the total amount of variance to be accounted for is the number of variables times 1.0. The factors are listed in order from the largest eigenvalue (explaining the most variance) to the smallest (explaining the least). There will be as many factors as there are variables; however, note that not all of the factors explain a useful percentage of the total variance in the scores.

The Initial Eigenvalues portion of this table displays this information for all the possible factors; the Extraction Sums of Squared Loadings portion displays the same information for only those factors retained due to having eigenvalues greater than 1. Note that "eigenvalues" are the "sum of the squared loadings" for a factor. Also note that the total cumulative variance explained is necessarily 100% when all possible factors are added up, but something less than 100% when only the retained factors are used.

The scree plot shows the eigenvalues plotted for each factor / component; note that there is a major break in the curve at one point, where all the eigenvalues up to that point differ in size, but eigenvalues after that point are much more similar, so that the later factors account for smaller (and more similar) amounts of variance. That break point is commonly used to represent the last factor that should be extracted.

Next is the Component Matrix, usually referred to as the loading matrix, which lists the correlations between each variable and each retained factor. If each of these correlations is squared, adding them across a row will give a variable's communality based on the factors retained; squaring and adding down a column will give a factor's eigenvalue. The correlations themselves are used to decide which variables are most related to, or "load on," which factors, and are referred to as "loadings." As with all correlations, the strength of the relationship is given by the absolute value, regardless of the sign.

The Component Score Coefficient Matrix has the same form as the Component Matrix, but its elements are coefficients for arriving at each factor from the observed variables, rather than correlations between factors and variables. A column of this matrix is called the eigenvector of that factor, which is just the column of numbers containing its coefficients. (The Component Score Covariance Matrix is also included, but this simply shows that the factors all correlate 0 with each other since they're orthogonal, and each has a variance of 1 since they're standardized.)

1.
How many "real" or "useful" factors emerged from the analysis? In this case you should use the scree plot for this decision, rather than retaining all factors with eigenvalues greater than 1.

2.
Which factor does HELPFUL load highest on? What about FORCEFUL?

Run another factor analysis, this time with rotation. Once we extract a given number of factors (which are like implicit new coordinate axes), we can re-orient them in space to allow us to simplify our interpretation and tell the best story about the factors at work in the data. Rotating a given number of factors doesn't change the total amount of variance they collectively explain, but it redistributes that explained variance among the factors. In particular, the new factor loadings should fall into a more interpretable pattern of high and low, instead of hovering around the ambiguous middle range. Some rotations keep the axes orthogonal, i.e., at right angles to each other, so the factors remain uncorrelated; other methods allow the factors themselves to become correlated (the axes are no longer at right angles).

Proceed as above, with the following modifications:

Extraction button: Under Extract select Number Of Factors and type your answer to Question 1 in the box, since the scree plot gives you a different number of factors than the eigenvalue criterion did. Click Continue.

Rotation button: Choose Varimax as the rotation method; this is the most popular algorithm for re-positioning factor axes, since it tries to get every variable to load either very high or very low on each factor while keeping the factors themselves uncorrelated. (The Quartimax algorithm, by contrast, is also orthogonal but attempts to make a given variable's correlations either high or low with each factor instead of making a given factor's correlations high or low with each variable. Then we can say each variable is either influenced by a factor or not, which is different from the Varimax goal of saying each variable either describes a factor or not.) Under the heading Display, make sure Rotated Solution is selected. This produces the Rotated Component Matrix of factor loadings for all the variables on the number of factors you chose, once those factors have been rotated.

In the output, the Extraction Communalities now show only how much of each variable was explained by just the factors you've chosen to retain. The Total Variance Explained output is partly the same, but under the Extraction Sums of Squared Loadings it too now describes only the retained factors. The Rotation Sums of Squared Loadings shows each factor's total variance accounted for (or eigenvalue) after rotation. The Component Matrix contains the unrotated loadings on your retained factors; the Rotated Component Matrix contains the new rotated loadings, which are the ones to interpret when trying to characterize a factor. (Additional output: The Component Transformation Matrix provides the coefficients for changing the original factors into the new rotated factors; the interpretation of the new Component Score Coefficient Matrix (or set of eigenvectors) is the same as in the nonrotated case, as is the new Component Score Covariance Matrix -- only these now describe the new factors.)

3.
What is the cumulative percentage of the total variance that is accounted for by your retained factors together BEFORE rotation? What is it AFTER rotation? What has changed due to the rotation?

4.
How much of the variance in HELPFUL is explained by the total solution (i.e., all the factors you've kept)?

5.
What are the loadings of "affectionate" on each factor in the unrotated solution and in the rotated solution?

6.
Name your (rotated) factors, and explain why you chose the names. To simplify our interpretation here we will use a somewhat conservative criterion for "loading strongly" of loadings greater than .45).

