Stat 379 Homework 8






Due: Friday April 18, 2008

Conduct a logistic regression analysis using the data set HW8s08.sav. The data set is from a study of 132 survivors of Hurricane Katrina in New Orleans in 2005, who were interviewed at the Red Cross evacuation center in Austin, Texas within two weeks of the disaster. The dependent variable is asddiag1, a dichotomous measure of Acute Stress Disorder diagnosis (1 = ASD, 0 = no ASD). The actual ASD measure is continuous, but we're only interested in whether the score was 56 or higher, indicating a positive diagnosis of ASD. The predictors (or in SPSS, the "covariates") are:

-
lifethrt: "To what degree did you feel your life was threatened during and after Katrina?" -- scale from 0 (not at all) to 6 (completely)

-
sex_f1: 1 = female, 0 = male

-
raceblk1: 1 = African-American, 0 = non-African-American

-
katinj_1: "Were you injured due to Katrina?" -- 1 = yes, 0 = no

-
menhel_1: Past mental health history (of bipolar, schizophrenia, depression, PTSD) -- 1 = yes, 0 = no

1.
Examine the frequency distributions of the outcome and the predictors. Choose ANALYZE -> DESCRIPTIVE STATISTICS -> FREQUENCIES; click Charts and ask for Histograms, and check the box requesting normal curves just so you can see more clearly whether a normal curve can plausibly be fit to the distribution. Click Continue, and finally I'd recommend UNchecking the Display Frequency Tables box, since that would otherwise give you pages of stuff you don't care about -- try it and see! Based on this, do you have any concerns about conducting the logistic regression analysis? Yes or no and why.

2.
Does the sample size meet the requirements for the proposed analysis? Yes or no and why.

Now choose ANALYZE -> REGRESSION -> BINARY LOGISTIC. ("Binary logistic" is for the case of a dichotomous DV; "Multinomial" and "Ordinal" are options for more, or ordered, DV categories.) On the left side, all variables in the data set are listed. Move asddiag1 to the Dependent box. Move all predictors (lifethrt, sex_f1, raceblk1, katinj_1, menhel_1) to the Covariates box.

In SPSS Logistic Regression, you need to specify which predictors are categorical variables. Click on the Categorical button. Move the four categorical predictors into the Categorical Covariates box. In linear regression you must recode categorical variables with g levels into g - 1 dummy (or other) variables; SPSS's logistic regression will do that for you, but you must tell it how by selecting a "Contrast". Use the default Contrast of "Indicator" variables, which is the logistic regression program's term for dummy variables. With any coding scheme, one group becomes the reference group, e.g., with dummy variables one group is coded all 0's. SPSS lets you choose whether the reference group should be the first level of the categorical variable, or the last (which is the default). That is, if your groups are labeled 1, 2, and 3, the "all 0s" group can be either 1 or 3. The choice is probably arbitrary in most cases but there may be times when you have a particular preference for which group the others get compared to; you will, however, ALWAYS need to be AWARE of which group is the reference group, since the change in odds you predict will be relative to that group. In this case, you should select each variable (or select them all at once) and click on "First" and then click "Change"; once you click on "Change", the description of each variable in the box will have the term "first" added to it.

Note: The reason we're choosing the first level of each (i.e., 0 as opposed to 1) is to identify the baseline categories as, respectively: male, non-African-American, uninjured, and no history of mental health problems. Then we can interpret the resulting changes in ASD odds as those associated with being, respectively, female, African-American, injured, and having past mental health problems. We could just as validly use the default choice, that is, the last category (i.e., 1 for each of these, as opposed to 0), as the reference category. The results would be identical except all the b-weights would have oppposite signs, and the odds ratio Exp(B) (or eb) results would thus each become the reciprocal of those using the first coding scheme. That is, if odds change by a factor of 3 going from category 0 to 1, then they change by a factor of 1/3 going from category 1 to 0. Notice that we have only two categories for each of our categorical predictors; if there were a three-level predictor SPSS would create two dummy variables, and our choice of reference group would be the one that both odds ratios were relative to. In the present case, you might realize that in fact we don't even have to use the Categorical button, since all our categorical variables are coded 0 vs. 1 and thus in effect are already dummy variables; the reference group (labeled 0 for each) is even the one we're choosing to use in the analysis by choosing the "first" option. But in general you do have to recode most categorical variables, so for this assignment we use the option just to demonstrate its function.

Click Continue and return to the main logistic regression window. You should now see the abbreviation "(Cat)" appended to the categorical predictors. The Method should be the default of "Enter" meaning no stepwise predictor selection options are requested, just as in our usual linear regression; that is, all predictors will be entered simultaneously, and only the unique effect of each predictor is examined. Under Options it will be helpful to ask for the "Iteration history" and "Confidence interval for exp(B)", and to request the display at each step. Click Continue, and then click OK.

3.
Examine the output box entitled "Dependent Variable Encoding." How is the DV dummy coded "internally" (i.e., within SPSS)? This is important for correctly interpreting the results: you have to know which of your outcomes SPSS calls "1" since that's the one it predicts, and you can then interpret the direction the prediction is going in (e.g., predicting presence of ASD, rather than predicting absence of ASD). The direction is not always the same as the code you've used in your data (especially if your values are letters instead of numbers).

4.
Examine the output box entitled "Categorical Variables Codings." Under "Parameter" the first (and only, in this case) dummy variable for each variable is just labeled "(1)". Verify that you chose the reference group correctly in the Categorical Covariates box, by now checking that values of "0" on each categorical variable are indeed coded as "0" in each dummy variable. Although we are treating "lifethrt" as continuous, we might have treated it as categorical. Present the dummy variables that would have appeared here to represent "lifethrt" if we had chosen to consider it as a seven-level categorical variable with the LOWEST level (or first: lifethrt = 0) as the reference group. (Optionally you could re-run the whole analysis, this time identifying "lifethrt" as categorical, solely for purposes of answering this question -- it's not necessary, but you would see how it works.)

5.
The final results are in the section labeled "Block 1" under "Variables in the Equation." The column labeled B lists the unstandardized regression weights for each variable. Parentheses in variable names indicate dummy code variables: "SEX_F1(1)" refers to the first (and in this case, only) dummy variable for sex_f1. Which predictors had a significant effect according to the Wald statistic? (The Wald statistic divides B by its SE, then squares the result -- it's literally a t2, though surprisingly it can also be viewed as a chi-square ((2) and is usually evaluated as such.)


Note: "Block 0" represents the prediction without using any predictors in the equation, i.e., the prediction based only on the intercept. This is equivalent to finding the proportion of subjects who fall into the ASD group, and using that proportion as everyone's probability of having ASD, without regard to factors like sex, injury, etc. If that probability is greater than .5, everyone gets placed in the ASD group; if it's less, everyone would be predicted to be non-ASD -- with obvious misclassifications resulting in either case. The intercept is the natural logarithm of the corresponding same-odds-for-everyone value, ln(P(ASD) / [1 - P(ASD)]).]

6.
The column labeled Exp(B) lists for each predictor how the odds of having a 1 on the dependent variable (that is, of having ASD) change with a 1 unit increase in the predictor. The sign of the B-weight is important for the interpretation of the results, since negative B-weights result in Exp(B) values (meaning "eb", which are odds ratios) between 0 and 1, while positive values result in Exp(B) values greater than 1. Exp(B) thus describes whether the odds will become larger or smaller as X increases. Of the three significant predictors, which was the strongest predictor of ASD, i.e., changed the odds the most? Which was second, and which was third?


Note: Keep in mind that "no effect" corresponds to an odds ratio of Exp(B) = 1 -- in which case the odds are multiplied by 1 when X increases by 1, and therefore remain the same. Also notice that it's the absolute value of B that characterizes the strength of the predictor: the only thing a negative B-weight means is that the odds increase in favor of the "no" group when X increases by 1, but the "amount the odds change by" is the same for, say, B = 1 or B = -1. These B-weights correspond to odds ratios of 2.71828 or 1/2.71828, respectively, so both in some sense mean a change by a factor of 2.71828 whether it's multiplying or dividing.

8.
Interpret the Exp(B) for menhel_1, stating exactly what that suggests about the presence of ASD under which sets of circumstances.

9.
Use the "likelihood ratio" chi-square or -2LL comparison method to test the sigificance of menhel_1, as described below. Compare the resulting p-value to the one obtained with the Wald test.


The Wald statistic provides a significance test, but the preferred method for testing significance of a predictor (or predictors) is to use the difference in chi-square between a model with all predictors included, and one with the predictor(s) of interest omitted. This difference between two chi-square values is itself a chi-square, with df equal to the number of predictors omitted. To find this, first note the chi-square value (called "-2 Log Likelihood) in the last step of the Block 1 "Iteration History" output. Then re-run the analysis without the predictor of interest, and note the corresponding "-2LL" chi-square value in that run's Block 1 output. Subtract the smaller -2LL value from the larger, to get a chi-square that represents the significance of the difference between the two models due to including that predictor. Look up the chi-square value on the appropriate df (df = 1 predictor omitted in this case), to see if the model is significantly better with the predictor included.


Alternatively, do both runs at once: use the "Next" button when entering the Covariates into the model, analogously to how it's used in sequential linear regression. Enter the smaller model's predictors, then click "Next" to go on to "Block 2 of 2", and enter the predictor being tested there. In the output there will now be three Blocks: Block 0, for the intercept-only model, Block 1, with all but one of the predictors, and Block 2, with the last predictor added as well. The last line of the "Iteration History" for each Block contains its -2LL, and you can subtract the Block 2 value from the Block 1 value to get the chi-square for the predictor you added in Block 2. Better yet, the "Omnibus Tests of Model Coefficients" output tells you the chi-square value and its significance for all the predictors added on the current step; for Block 2, this output now refers solely to the predictor you've added on that step, which means it presents exactly the chi-square you've been calculating through subtraction up till now.


Note: The overall chi-square value for a model is also known as its deviance, or -2LL (-2 * log likelihood) statistic, which is -2 times the natural log of the likelihood statistic for that model -- and the derivation of "likelihood" needn't concern us. The likelihood will be between 0 and 1; the log likelihood itself will thus be negative, so multiplying it by -2 makes it positive, and twice as large. Multiplying by -2 also makes that statistic follow a chi-square distribution, which is why it can be thought of as a chi-square in the first place. Larger chi-square values mean worse fit to the data, i.e., greater (probably significant) deviation of the predicted outcomes from the actual observed outcomes, so smaller chi-squares are desirable here. A model with only an intercept (Block 0) has the largest -2LL value; -2LL gets smaller with each additional (useful) predictor. The difference between two models' -2LL values thus tells us whether adding the predictor makes -2LL significantly smaller, i.e., makes the prediction better; it's this improvement chi-square that's given under "Omnibus Tests of Model Coefficients". Notice this model chi-square is the difference between the "Model Summary" chi-square value with the predictors included (final Block), and the -2LL value of the model with only an intercept (Block 0).

10. Since there is no "variance to be explained" in logistic regression, no R2 can be computed to index the model's overall success. But the so-called "pseudo-R2" compares the model's chi-square improvement value to the intercept-only (Block 0 ) model's -2LL value. The former represents the success of the all the model's combined predictors in improving the prediction, and can be found in the last Block's "Omnibus Tests of Model Coefficients" next to "Model".The latter represents how bad the prediction would be (notice chi-square is large) with no predictors and everyone therefore being assigned the same probability of ASD; it's found in the last line of the "Iteration History" for Block 0. The model chi-square improvement divided by the intercept-only chi-square thus represents the proportion of "how much -2LL" there is to predict, that actually is predicted by the model. (It is NOT the same as the Cox and Snell or Nagelkerke R2 values included in the output.)


Calculate this "pseudo-R2" for the full model.

11.
In the classification tables for Block 0 (intercept only) and Block 1 (or 2 -- in any case, the final one with all five predictors), a person is predicted to have ASD if her predicted probability of ASD was greater than .5. How much better was the total classification accuracy when the predictors were used? (There are several ways to answer this; you're free to simply use the overall percentage, or to elaborate as desired.)

12.
EXTRA CREDIT: Imagine two people with identical values on all categorical predictors (e.g., two African-American women who were uninjured and have no prior mental health history). For the continuous predictor, if one has a lifethrt value of 3, and the other has a lifethrt value of 5, how much greater are the second one's odds of having ASD? Don't calculate the odds of each to compare them, just use lifethrt's Exp(B) appropriately.

