238
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TABLE 10.1 A Comparison of Observed Values of sy (Based on 10,000 X's) and

Theoretical Values of o for Various Sample Sizes When the Three Parent
Populations (Normal, Rectangular and Skewed) Sampled Have Equal
Means and Standard Deviations (u = 100 and ¢ = 15)

S¥
Parent Population n=1 n=2 n=35 n=10 n=25 n =100
Normal 14.90 10.61 6.74 481 2.96 1.498
Rectangular 15.03 10.69 6.66 4.70 2.97 1.487
Skewed 14.98 10.49 6.63 4.70 298 1.479
Gy =0o/vA i5 10.61 6.71 4.74 3.00 1.500

(where u = 100 and o = 15) is 2.66% for the normal distribution (see left-most figure in
Panel A), 1.89% for the rectangular distribution (see middle figure in Panel A), and 2.58%
for the skewed distribution (see right-most figure in Panel A) shown in Figure 10.3.

Note that Panels B, C, and D of Figure 10.3 are empirical sampling distributions in
which n = 1, 2, and 5, respectively. For example, for Panel D, a sample of five observations
was selected randomly from the normal parent population, the mean of these five observa-
tions was computed, and this process was repeated 10,000 times. The left-most figure in
Panel D is the frequency distribution of these 10,000 means'’—that is, this figure is an
empirical sampling distribution of the mean when = 100, o= 15, and n = 5. If the process
had been repeated, not 10,000 but 1,000,000 times, the empirical sampling distribution
would have become almost perfectly symmetrical and normal. The small amount of irregu-
larity evident in the sampling distributions from the normal population would virtually dis-
appear and the empirical sampling distribution would coincide with the theoretical
sampling distribution.

Observe that the mean of all of the sampling distributions, the mean of the X’s, is
approximately 100 = u in each figure. Indeed, the expression £( X) = pt is another way of
saying that the mean of the sampling distribution of an infinite number of samples (not just
10,000 as in Figure 10.3) is the parameter . In Panels B to E of Figure 10.3, the sample
sizes are small (1, 2, 5, and 10); some degree of non-normality in the parent population
continues to be evident in the sampling distributions, but progressively less so as n in-
creases. Panel F gives the three corresponding empirical sampling distributions when n was
increased to 25. Notice that the sampling distributions for the normal, rectangular, and
skewed populations are very similar, yet n is only 25. To the untrained eye, the distributions
in Panel F may not appear to be normal, but this is only because the vertical (Percent) axis
has been scaled uniformly in Panels A to F so that the decrease in the variability of the
samipling distribution would be evident. The sampling distributions in Figure 10.3 demon-
strate that even in non-normal distributions the standard deviation of the X ’s—that is, the
standard error of the mean—equals the standard deviation of the parent population divided
by the square root of the sample size: 6z = /7.

In Table 10.1, the standard errors, sz (each based on 10,000 means for the various
sampling distributions), are reported along with the theoretical value, ox = o/~7 . For

12The authors are indebted to George Kretke for this computer simulation demonstration. [t is estimated that

this demonstration done by hand using a table of random numbers and a hand calculator would have required
approximately 2,500 hours—approximatety one full working year!

10.17 Proof that 6 = o*/n

example, when samples of n = 25 were drawn from a skewed parent population, the result-
ing 10,000 sample means had a standard deviation of 2.98, which agrees almost perfectly
with the theoretical standard error of the mean, ¢/+/n =15/+/25 = 3. In other words, even
when the parent population is not normal, the formula 63 = 6/ accurately depicts the
degree of variability in the sampling distribution.

W THE USE OF SAMPLING DISTRIBUTIONS

The notion of a sampling distribution is used by the mathematical statistician to derive the
techniques of inferential statistics. Researchers do not create their own sampling distribu-
tion by repeatedly drawing samples from a population. That would be not be feasible and is
unnecessary. In practice, only one sample of n cases is drawn; then the theory underlying
the sampling distribution is used to establish a confidence interval. For example, an investi-
gator might draw a sample of n = 200 cases and establish a single confidence interval, say,
the .95 confidence interval, around X. Many samples are not drawn to construct an actual
sampling distribution of X. Instead, one has a single interval, extending perhaps from 46.5
to 51.5. Is p in this interval? It is not possible to know for certain. Is it rational to act as
though 4 is in this interval? Indeed it is, since in the long run ¢ would be missing from only
5% of the .95CT's. The technique of interval estimation is based on the theoretical concept
of the sampling distribution with its notion of infinitely many samples drawn and their
means distributed in some known fashion.

W PROOF'3 THAT ¢} = ¢%/n

The proof is straightforward that whatever the shape of the parent population, the sampling
distribution of X has a mean of i and variance of ¢% n, where y and ¢ are the mean and
variance of the population sampled and n is the sample size. X is the variable being mea-
sured on the population; its mean is ¢ and its variance is o2. A random sample of size n has
a first observation X, a second observation X,, ..., and an nth observation X,; X, is merely
the first score chosen in each sample, not the smallest score. Therefore, the collection of all
possible X,’s, that is, all first scores chosen in all possible random samples from the popula-
tion, forms a population with mean u and variance ¢. Thus, X,, X5, ..., X, are each random
variables from a population with a mean of ¢ and a variance of ¢2.

The sample mean equals (X, + X, + ... + X,)/n. The mean of the sampling distribution
of means equals the expected value of X:

E(X) :E[(X' +X2+...+X,,)]

n

=(1)E(X, +X, +...+X,)
n
=(%)[E(X,)+ E(X))+...+ E(X)]

"This section is a more mathematical presentation of the concepts presented intuitively in Sections 10.11
and 10.12. Although not essential for a conceptual understanding, it is provided for students who desire a closer
look at the related mathematics.

239



240

10 STATISTICAL INFERENCE: SAMPLING AND INTERVAL ESTIMATION

Now X, has the same distribution over samples as does X, or any other X.. Its popula-
tion mean and variance are i and ¢; hence, the last term in the equation above equals:

EX) =($)u+p+..+m=(L)nwy=p

Stated in words, regardless of the shape of the parent population,-the.expected value of
X is the mean u of the sampling distribution of the sample means, which is also the?rrlx?an of
the population being sampled. How much will X vary from sample to sample’ 'ﬁa(t:)h
sample contains more than one observation, the variance of. the sample means will be
smaller than the variance of the parent population. Notlc;e lhat ¥f n = 1, the sampling d1§m-
bution of the mean would be the same as the frequenf:y distribution of the parent population,
as shown in Panel B of Figure 10.3. If samples with n = 1 were repeat.edly drawn anfi a
sampling distribution of these “sample means” were (,ton:struc.:ted, the v‘e?nance’?f ft‘hc onigz-
nal population, ¢2, and the variance of the sampling distribution of the “means” of samples
of size 1 would be the same; 6%/n = ¢¥/1 = o2

E(sxh) = 0%’

What is the variance of the means of samples of size n = 2.from a population? Let the
population variance be ¢2. For each sample, X = (X, +.X2)/2 is calculated. X, agd X, are
arbitrary designations for the first and second observations randomly drawn an | are n0;
related to the size of the scores. Consequently, over all random sarpples, X, }}as variance o
and so does X,. Because the samples are randomly drawn, there is no re.lauonshlp (p=0)
between the values of the first and second observations in any sample. Since X; and X, are
uncorrelated, the correlation, and the covariance, is zero between the first gnd second obser-
vations in a sample over infinitely many random samples from a population.

Now the variance over random samples of X = (X + X,)/2 is denoted as follows:

2_ 2
0% =0{x+x)02

When a vaniable is multiplied by a constant (in this instance, '/2), the variance of _the
resulting variable is the original variance multiplied by the square of the constant (Section
5.11). Therefore,

2
2 (1 2
Oy = (£) O

If two variables are uncorrelated, then the variance of the sum of the two variables is
the sum of their variances (Equation 7.8). We argued that X, and X, are uncorrelated:

2 2 — Lie2 2
($) 0% ex, =4(0}, +0%, +2pxx,0x,0x,) = $(0%, +0%,)

The variance of X, over repeated random samples is 0%, and so is the variance of
X, :0% = 0%, =07, Therefore, the equation can be written as follows:
1

10.17 Proof that o 2= o%/n

(thoi, +oi)=(4)20) =012

The equation expresses the conclusion of the argument: The variance of the mean of
samples of size 2 from a population with variance o2 is equal to ¢%/2. In this instance, n = 2
and 0')72 = ¢2/2. This is no coincidence. Itis true in general that for random samples of size
n,o6i=0%n.

If random samples of size n are taken from a population with variance ¢2, then the
variance of the mean, X = (X, + X, +... + X,)/n, over nn samples is given by:
2 ) Al
0% =0 K ~Xor X210

The right-hand side of the previous equation shows o 2 to be the variance of (1/n) times
the variance of the sum of the n uncorrelated variables X i» X2 ... X,. Therefore:

,
2 (1) .2
O% ‘(F) O X+ Xy4..4X,)

Each variable X;(i =1, 2, ..., n) has a variance of o2 and is uncorrelated with the other
n~ I variables. Therefore, the variance of the sum of the n uncorrelated variables is the sum
of the variances of the variables, because each of the n(n — 1)/2 covariance is 0. Thus:

(#)ZO-(ZX,+X3+...+X,,) =(ﬁ):(°')2(. +0')2(1 +--~+0)2(,,)

Because each variable has the same variance 62, the previous equation can be written as:

(%)2(0'2+O'2+...+o'3)=(%)2(no'3)=9;-1; (10.7)

A fundamental relationship is expressed in Equation 10.7: The variance of the means of
random samples of size n from a population with variance o? is equal to 0*/n = o The
expression og? has traditionally been called the variance error of the mean. lIts positive
square root (Equation 10.8), is the standard error of the mean:

o
ox= = (10.8)

The standard error of the mean, o, is the standard deviation of the sampling distribu-
tion of the means of an infinite number of samples, each of size », from a population with
variance ¢2. Notice that in Table 10.1 and Figure 10.3 that the population from which
samples were drawn had a standard deviation of 15, and the standard deviation of the sam-
pling distribution of means of random samples of various sizes is in agreement with Equa-
tion 10.8. For example, when n = 10: 6r=0/Vn=15//10 = 4.74; whereas in Table 10.1,

241



242

10 STATISTICAL INFERENCE: SAMPLING AND INTERVAL ESTIMATION

the values of s y were 4.81, 4.70, and 4.70 for the normal, rectangular, and skewed distribu-
tions, respectively.

@ PROPERTIES OF ESTIMATORS

An estimate is a value of a sample statistic that equals the value of a population parameter
plus some amount of error. For example, the sample mean X is an estimator of the popula-
tion mean g There is a close analogy between the way in which a sample mean is calculated
and the way in which one might calculate a population mean. It is logical to think of X as
estimating u. However, there are other ways of treating sample data to arrive at a value that
estimates 4. Why not use the sample median or the sample mode as an estimate of u? It is
certainly possible to do this; however, by the criteria used in assessing the properties of an
estimator, X turns out to be a better estimator of g than either the sample median or the
sample mode (Section 4.16).

In the following three sections, the properties of estimators of parameters will be exam-
ined. What are the different ways in which parameters can be estimated? Is one estimator to
be preferred over all others for estimating a certain parameter, and why? The properties of
unbiasedness, consistency, and efficiency will be considered.

m UNBIASEDNESS

As discussed in Section 5.13, an estimator, , is said to be unbiased for estimating a param-
eter, 6, if the mean of the sampling distribution of the sample estimates equals the value of
the parameter being estimated. Equivalently, an estimator, 8, is unbiased if its expected
value, E( ), is equal to the parameter, 8, being estimated.

Whatever the nature of the population being sampled, the sample mean, X, is an unbi-
ased estimator of the population mean, u. Notice in Figure 10.3 that the value of the popu-
lation mean, 4, is 100 and that the mean of any of the empirical sampling distributions of X
is approximately 100. This illustrates the unbiasedness of X as an estimator of u. If
samples are drawn randomly from a normal distribution or some other symmetric distribu-
tion, then the sample median is also an unbiased estimator of the population mean, g In
other words, the average of the medians on an infinite number of random samples from a
normal distribution equals 4, the mean of the normal distribution (which is, of course, also
its median).

There are many examples of biased estimators. Suppose one wishes to estimate p, the
correlation between two variables in the population. Imagine that for a particular popula-
tion p = .75. The mean of the sampling distribution of the sample correlation coefficient, r,
will be slightly less than .75 for any finite sample size, Thus, r is a negatively biased estima-
tor of p."* When the expected value of a statistic is less than the parameter being estimated,
it is said to be neganvely biased. Conversely, if E( 6)> 6, & is said to be positively biased.
In Equation 5.5, the variance in a sample is defined as s2 = £(X;— X)¥(n-1).It might have
been more natural to measure variability by simply taking the average of the n squared

The extent of the bias is exceedingly small—Iess than 1% if n > 25 (Olkin, 1967, p. 111).

10.19 Unbiasedness

Relative Frequency

75 100 125 150
Variance Estimate

Sampling Distribution of s2 and £(X; - X)%/6 for Random Samples of Size 6

from a Normal Distribution with Variance ¢? = 100

deviations around the sample mean. Instead, it was decided to place (n — 1) in the denomi-
nator of s2 because the quantity s> is an unbiased estimator of the population variance ¢%;
whereas, Z(X; - X)%n is negatively biased as an estimator of ¢2. That is:

Z(X, - Xy’
E| — |<¢?
n

Suppose that we took many random samples from any population with variance ¢* and
calculated s each time. The average of these sample variances would equal 0% Hence, s? is
an unbiased estimator of o2 If instead, Z(X; - X )*/n had been calculated on each sample,
the average of these quantities would have been smaller than o2, namely [(n — 1)/n}c?.
Of course, if n were quite large—100 or more for example—the difference between s? and
Z(X;— X)*n would be very small, because the value of (n — 1)/n (the ratio of the degrees of
freedom to sample size) would approach 1, and the estimator would contain only a small
bias as an estimator of &2,

Suppose that one has a normal distribution with mean 4 = 0 and variance ¢ = 100. If
an infinite number of random samples of size n = 6 were drawn from the population and
both 52 and Z(X; — X )%/6 were calculated for each sample, the two sampling distributions in
Figure 10.4 would be obtained.

Notice that the mean of the sampling distribution of s2 is 100 the value of ¢2. This
illustrates the unbiasedness of s in this instance, that is, E(s?) = o’%. The mean of the sam-
pling distribution of (X, ~ X)¥6 is equal to 83.33. In this instance, the bias introduced into
the estimation of o2 by using n in place of 7 — 1 in the denominator of the sample variance
is sizable, that is, (n — 1)/n = 5/6 here.

How was it decided that the denominator of the sample variance should be n - 1 (i.e.,
the degrees of freedom, V) in order for E(s*)= ¢?? It was not determined empirically or by
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