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Categorical Datn and Chi-Square

IN SaiNT-Exupgry's, The Lirtle Prince, the narrator, remarking that he believes the prince
came from an asteroid known as B-612, explains his attention to such a trivial detail as the
precise number of the asteroid with the following comment:

Grown-ups love figures, When you tell them you have made a new friend, they never ask
you any questions about essential matters. They never say to you, “What does his voice
sound like? What games does he love best? Does he collect butterflies?” Instead they
demand: “How old is he? How many brothers has he? How much does he weigh? How
much does his father make?” Only from these figures do they think they have learned
anything about him.'

In some ways, the first chapters of this book have concentrated on dealing with the kinds
of numbers Saint-Exupéry’s grown-ups like so much. This chapter will be devoted to the
analysis of largely nonnumerical data.

In Chapter 1, I drew a distinction between measurement data (sometimes called quanti-
tative data) and categorical data (sometimes called frequency data). When we deal with
measurement data, each observation represents a score along some continuum, and the most
common statistics are the mean and the standard deviation. When we deal with categorical
data, on the other hand, the data consist of the frequencies of observations that fall into each
of two or more categories (“Does your friend have a gravelly voice or a high-pitched
voice™” or “Is he a collector of butterflies, coins, or baseball cards?").

In Chapter 5, we examined the use of the binomial distribution to test simple hypothe-
ses. In those cases, we were limited to situations in which an individual event had one of
only two possible outcomes, and we merely asked whether, over repeated trials, one out-
come occurred (statistically) significantly more often than the other.

In this chapter, we will expand the kinds of situations that we can evaluate. We will deal
with the case in which a single event can have two or more possible outcomes, and then with
the case in which we have two variables and we want to test null hypotheses concerning
their independence. For both of these situations, the appropriate statistical test will be the
chi-square (x°) test,

The term chi-square (x*) has two distinct meanings in statistics, which leads to some
confusion. In one meaning, it is used to refer to a particular mathematical distribution that
exists in and of itself without any necessary referent in the outside world. In the second
meaning, it is used to refer to a statistical test that has a resulting test statistic distributed in
approximately the same way as the x distribution. When you hear someone refer to chi-
square, they usually have this second meaning in mind. (The test itself was developed by Karl
Pearson [1900] and is often referred to as Pearson’s chi-square to distinguish it from other
tests that also produce a x* statistic—for example, Friedman's test, discussed in Chapter 18,
and the likelihood ratio tests discussed at the end of this chapter and in Chapter 17.) You need
to be familiar with both meanings of the term, however, if you are to use the test correctly and
intelligently and if you are to understand many of the other statistical procedures that follow.

6.1 The Chi-Square Distribution

chi-square (%)
distribution

The chi-square ( x*) distribution is the distribution defined by
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! Antoine de Saint-Exupéry, The Little Prince, trans. Katherine Woods (New York: Harcourt Brace, 1943), pp. 15-16.

gamma function
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This is a rather messy-looking function and most readers will be pleased to know that they
will not have to work with it in any arithmetic sense. We do need to consider some of its
features, however, to understand what the distribution of x? is all about. The first thing
that should be mentioned, if only in the interest of satisfying healthy curiosity, is that
the term ['(k/2) in the denominator, called a gamma function, is related to what we
normally mean by factorial. In fact, when the argument of gamma (k/2) is an integer, then
T(k/2) = [(k/2) — 1]!. We need gamma functions in part because arguments are not always
integers. Mathematical statisticians have a lot to say about gamma, but we’ll stop here.

A second and more important feature of this equation is that the distribution has only one
parameter (k). Everything else is either a constant or else the value of x* for which we want
to find the ordinate [ f(x?)]. Whercas the normal distribution was a two-parameter function,
with ju and o as parameters, x° is a one-parameter function with k as the only parameter.
When we move from the mathematical to the statistical world, k will become our degrees of
freedom. (We often signify the degrees of freedom by subscripting x*. Thus, x7 is read “chi-
square with three degrees of freedom.” Alternatively, some authors write it as x*(3).)

Figure 6.1 shows the plots for several different x* distributions, each representing a dif-
ferent value of k. From this figure, we can see that the distribution changes markedly with
changes in k, becoming more symmetric as k increases. It is also apparent that the mean and
variance of each x? distribution increase with increasing values of k and are directly related
to k. It can be shown that in all cases
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Figure 6.1 Chi-square distributions for df = 1, 2, 4, and 8 (arrows indicate critical values at alpha = .05)

6.2 The Chi-Square Goodness-of-Fit
Test—One-Way Classification

chi-square test

We now turn to what is commonly referred to as the chi-square test, which is based on the
x? distribution. We will first examine the test as it is applied to one-dimensional tables and
then as applied to two-dimensional tables (contingency tables).
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goodness-of-fit
test

The following example is based on one of the most famous experiments in animal learn-
ing, conducted by Tolman, Ritchie, and Kalish (1946). At the time of the original study,
Tolman was engaged in a theoretical debate with Clark Hull and the latter’s students on
whether a rat in a maze learns a discrete set of motor responses (Hull) or forms some sort of
cognitive map of the maze and responds on the basis of that map (Tolman). At issue was the
fundamental question of whether animals learn by stimulus-response conceptions or
whether there is room for a cognitive interpretation of animal behavior. (To put this in less
academic language, “Do animals think?” Though that doesn’t seem like such a radical ques-
tion now, I assure you that it was a very radical question in the 1940s,) The statistical test in
question is called a goodness-of-fit test because it asks whether there is a “good fit"
between the data (observed frequencies) and the theory (expected frequencies).

In a simple and ingenious experiment, Tolman and his colleagues first taught a rat to run
down a starting alley of a maze into a large circular area. From the circular area, another
alley exited straight across from the entrance but then turned and ended up in a goal box,
which was actually to the right of the circular area. After the rats had learned the task (“go
to the circular area and exit straight across™), Tolman changed the task by making the
original exit alley a dead end and by adding several new alleys, one of which pointed in the
direction of the original goal box. Thus, the rat had several choices, one of which included
the original alley and one of which included a new alley that pointed directly toward the
goal. The maze is shown in Figure 6.2, with the original exit alley drawn with solid lines and
the new alleys drawn with dotted lines. If Hull was correct, the rat would learn a stimulus-
response sequence during the first part of the experiment and would therefore continue to
make the same set of responses, thus entering the now dead-end alley. If Tolman was right
and the rat learned a cognitive map of the situation, then the rat would enter the alley on the
right because it knew that the food was “over there to the right.”" As Tolman was the one who
published the study, you can probably guess how it came out—the rats chose the alley on
the right more often than the others. But we still need some way of testing whether the
preference for the alley on the right was the result of chance (the rats entered the alleys at
random) or whether the data support a general preference for the right alley. Do the data
represent a “good fit” to a random choice model? Tolman certainly hoped not because he
wanted to show that they had learned something.

It certainly looks as if animals were choosing Alley D much more than the others, which
is what Tolman expected, but how can we be sure?

Alley Chosen
A B C D
Observed 4 5 8 15
Expected 8 8 8 8

Start

Figure 6.2 Schematic diagram of Tolman's maze. The alleys are labeled A through
D from left to right.
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The most common and important formula for x* involves a comparison of observed and
expected frequencies. The observed frequencies, as the name suggests, are the frequencies
you actually observed in the data—the numbers in the table in Figure 6.2. The expected
frequencies are the frequencies you would expect if the null hypothesis were true. We want
to test the null hypothesis that rats enter alleys at random. In this case, we have 32 rats, each

observed
,. frequencies

& expected
?' [ frequencies

E,‘ making independent choices. (If we used the same four rats 8 times, we would probably

bty have strong reservations about this assumption of independence.) We have four alleys, so if

.“’.- the rats are responding at random, rather than on the basis of what they have learned about

the maze, we would expect that one-quarter of them would enter each alley. That means that
we would expect frequencies of § for each alley. Instead, we got frequencies of 4, 5, 8, and
i 15. The standard formula for the chi-square test looks at the difference between these
R_ observed and expected frequencies.

. 0 - E)?
i Gyt = )

This formula should make a certain amount of intuitive sense. Start with the numerator. If the
null hypothesis is true, the observed and expected frequencies (0 and E) would be reasonably
£ close together and the numerator would be small, even after it is squared. Moreover, how
'% X large the difference between O and E would be ought to depend on how large a number we
B expected. If we were talking about 1,000 animals entering each alley, an O — E difference of
i 5 would be trivial. But if we expected 8 animals to enter each alley, an O — E difference

of 5 would be substantial. To keep the squared size of the difference in perspective relative to
*f" i the number of observations we expect, we divide the former by the later. Finally, we sum all
b of the alleys to combine these relative differences. (If you wonder why we square the numer-

§ 2N ator, work out what would happen with these, or any other data, if we did not.)

f( First, I will go ahead and calculate the x? statistic for these data using the abserved and
expected frequencies given in the table.

E
@8 (5-8 (88 (I5-8®
=% *t % T3 *t73
=925

The Tabled Chi-Square Distribution

Now that we have obtained a value of x*, we must refer it to the x* distribution to determine
the probability of a value of x* at least this extreme if the null hypothesis of a chance distri-
bution were true. We can do this through the use of the standard tabled distribution of x*.
tabled The tabled distribution of x°, like that of most other statistics, differs in a very impor-
distribution of 32 tant way from the tabled standard normal distribution that we saw in Chapter 3. We will use
a simple illustration. Consider the distribution of x? for 1 df shown in Figure 6.1. Although
it is certainly true that we could construct a table of exactly the same form as that for the
standard normal distribution, allowing us to determine what percentage of the values are
greater than any arbitrary value of x°, this would be tremendously time-consuming and
wasteful. We would have to make up a new table for every reasonable number of degrees of
freedom. It is not uncommon to want as many as 30 df, which would require 30 separate
tables, each the size of Appendix z. Such a procedure would be particularly wasteful
because most users would need only a small fraction of each of these tables. If we want to
reject Hy at the .05 level, all that we really care about is whether our value of x* is greater
or less than the value of x? that cuts off the upper 5% of the distribution. Thus, for our
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particular purposes, all we need to know is the 5% cutoff point for each df. Other people
might want the 2.5% cutoff, 1% cutoff, and so on, but it is hard to imagine wanting the 17%
cutoff, for example. Thus, tables of x* such as the one given in Appendix x?, part of which
is reproduced in Table 6.1, are designed to supply only those values that might be of general
interest.

Table 6.1 Upper percentage points of the x* distribution

df 995 8990 975 950 900 .750 .00  .250 100 .050 .025 .010 .005
1 000 000 000 000 002 010 045 1.32 27 3.84 5.02 6.63 7.88
2 001 002 005 010 021 058 139 2.77 4.61 599 7.38 9.21 1060
3 007 011 022 035 058 121 237 4.11 6.25 782 935 1135 1284
4 021 030 048 071 106 192 336 5.39 7.78 9.49 1114 1328 1486
5 041 055 083 115 161 267 435 6.63 9.24 11.07 1283 1509 1675
6 068 087 124 164 220 345 535 7.84  10.64 12.59 1445 1681 1855
7 099 124 169 217 283 425 635 204 12,02 14.07 16,01 1848 2028
8 134 165 218 273 349 507 734 1022 1336 15.51 17.54 2009 2196
9 173 2090 270

333 417 590 834 1139 1468 16.92 19.02 2166 2359

Look for a moment at Table 6.1, Down the leftmost column you will find the degrees of
freedom. Tn each of the other columns, you will find the critical values of x* cutting off the
percentage of the distribution labeled at the top of that column, Thus, for example, you will
see that for 3 df a x? of 7.82 cuts off the upper 5% of the distribution. (Note the boldfaced
entry in Table 6.1.)

Returning to our example, we have found a value of x* = 9.25 on 3 df. We have already
seen that, with 3 df, a x* of 7.82 cuts off the upper 5% of the distribution. Because our
obtained value (x2,) = 9.25 is greater than x }; = 7.82, we reject the null hypothesis and
conclude that the obtained frequencies differed from those expected under the null hypoth-
esis by more than could be attributed to chance.? In other words, Tolman's rats were not
behaving randomly—they look as if they knew what they were doing.

6.3 Two Classification Variables: Contingency
Table Analysis

contingency
table

In the previous example, we considered the case in which data are categorized along only
one dimension (classification variable). Often, however, data are categorized with respect to
two (or more) variables, and we are interested in asking whether those variables are inde-
pendent of one another. To put this in the reverse, we often are interested in asking whether
the distribution of one variable is contingent on a second variable. In this situation, we will
construct a contingency table showing the distribution of one variable at each level of
the other. An excellent example is offered by a study by Pugh (1983) on the “blaming the
victim” phenomenon in prosecutions for rape.

Pugh conducted a thorough and complex study examining how juries come to deci-
sions in rape cases. He examined a number of variables, but we will collapse two of them

? Notice that here the subscript for 37 (ie., obt and .05) do not refer to the degrees of freedom, but designate either
the abtained vahie of x2[x3,] ot the value of »* that cuts off the largest 5% of the distribution _ﬁ,{,].wm we
1) =384,
oS

want to designate both the degrees of freedom and the level of alpha we write something like x
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and simply look at his data about (1) whether the defendant was found innocent or guilty,
and (2) whether the defense alleged that the victim was somehow partially at fault for the
rape. Pugh's actual data are presented in Table 6.2 in the form of such a contingency
table,

Table 6.2 Pugh's data on decisions in rape cases

Verdict
Fault Guilty Not Guilty Total
Low 153 (127.559) 24 (49.441) 177
High 105 (130.441) 76 (50.559) 181
Total 258 100 358

For the moment, ignore the numbers in parentheses. This table shows some evidence
that jurors assign guilt partly on the basis of the perceived faults of the victim. Notice that
when the victim was seen as low in fault, approximately 86% (153/177) of the time the
defendant was found guilty. On the other hand, when the victim was seen as high in fault,
the defendant was found guilty only 58% (105/181) of the time.

Expected Frequencies for Contingency Tables

marginal totals
cell
row total

column totals

The expected frequencies in a contingency table represent those frequencies that we would
expect if the two variables forming the table (here, guilt and victim blame) were indepen-
dent. For a contingency table, the expected frequency for a given cell is obtained by multi-
plying together the totals for the row and column in which the cell is located and dividing
by the total sample size (V). (These totals are known as marginal totals, because they sit at
the margins of the table.) If Ej is the expected frequency for the cell in row i and column j,
R, and C; are the corresponding row and column totals, and N is the total number of
observations, we have the following formula™:

R.C;
Ejy=—
N
For our example

177 = 258

i1 = e = 127,559
Fiy o SLX 100 0481
358
181 x 258
Ey = —g— = 130.441
181 x 100
En= —— = 50559

These values are shown in parentheses in Table 6.2.

3 This formula for the expected values is derived directly from the formula for the probability of the joint occur-

rence of two independent events given in Chapter 5 on probability. For this reason, the expected values that result
are those that would be expected if Hy were true and the variables were independent. A large discrepancy in the fit
between expected and observed would reflect a large departure from independence, which is what we want 1o test.
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Calculation of Chi-Square

Now that we have the observed and expected frequencies in each cell, the calculation of x?
is straightforward. We simply use the same formula that we have been using all along,
although we sum our calculations over all cells in the table.

(0—E)
=y
(153 — 127.559)% (24 — 49.441)°
T 127559 49.441
=3593

(105 — 130.441)* (76 — 50.559)*
130.441 50.559

Degrees of Freedom

Evaluation of x?

Before we can compare our value of x* to the value in Appendix x*, we must know the de-
grees of freedom. For the analysis of contingency tables, the degrees of freedom are given by
df=(R—1)(C—-1)
where
R = the number of rows in the table
and
C = the number of columns in the table

For our example we have R = 2 and C = 2; therefore, we have (2 — 1)(2 — 1) = 1 df. It may
seem strange 1o have only 1 df when we have four cells, but you can see that once you know
the row and column totals, you need to know only one cell frequency to be able to determine
the rest.

With 1 df, the critical value of x*, as found in Appendix x*, is 3.84. Because our value of
35.93 exceeds the critical value, we will reject the null hypothesis that the variables are
independent of each other. In this case, we will conclude that whether a defendant is found
guilty depends in part on whether the victim is portrayed by the defending lawyer as being
at fault for the rape. How do these results fit with how you think you would judge the case?

Correcting for Continuity

Yates's
correction for
continuity

Many books advocate that for simple 2 x 2 tables such as Table 6.2, we should employ what
is called Yates’s correction for continuity, especially when the expected frequencies are
small. (The correction merely involves reducing the absolute value of each numerator by
0.5 units before squaring.) There is an extensive literature debating the pros and cons of
Yates's correction, with firmly held views on both sides. However, the common availability
of Fisher's Exact Test, to be discussed next, makes Yates's correction superfluous.

Fisher's Exact Test

Fisher introduced what is called Fisher's Exact Test in 1934 at a meeting of the Royal Sta-
tistical Society. (Good [2001] has pointed out that one of the speakers who followed Fisher
referred to Fisher’s presentation as “the braying of the Golden Ass." Statistical debates at

-
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fixed marginals
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that time were far from boring, and no doubt Fisher had something equally kind to say about
his critic.)

Without going into details, Fisher's proposal was to take all possible 2 x 2 tables that
could be formed from the fixed set of marginal totals. He then determined the proportion of
those tables whose results are as extreme, or more so, than the table we obtained from our
data. If this proportion is less than e, we reject the null hypothesis that the two variables are
independent and conclude that there is a statistically significant relationship between the
two variables that make up our contingency table. (This is classed as a conditional test
because it is conditioned on the marginal totals actually obtained, instead of all possible
marginal totals given the total sample size.) I am assuming that you will do the calculations
using statistical software rather than by hand,

Fisher's Exact Test has been controversial since he proposed it, One problem concerns
the fact that it is a conditional test (conditional on the fixed marginals). Some have argued
that if you repeated the experiment exactly, you would likely find different marginal totals
and have asked why those additional tables should not be included in the calculation.
Making the test unconditional on the marginals complicates the calculations considerably.
This may sound like an easy debate to resolve, but if you read the extensive literature sur-
rounding fixed and random marginals, you will find that it is a difficult debate to follow and
you will probably come away thoroughly confused. (An excellent discussion of some of the
issues can be found in Agresti (2002), pages 95-96.)

Fisher's Exact Test also leads to controversy because of the issue of one-tailed versus
two-tailed tests and what outcomes would constitute a “more extreme” result in the oppo-
site tail. Instead of going into how to determine what is a more extreme outcome, I will
avoid that complication by simply telling you to decide in advance whether you want a one-
or a two-tailed test, and then to report the values given by standard statistical software.
(T haven't given you any calculational formula for Fisher's Exact Test because I cannot
imagine that you would ever do the calculations by hand.) Virtually all common statistical
software prints out Fisher’s Exact Test results along with Pearson’s chi-square and related
test statistics.

Fisher’'s Exact Test versus Pearson’s Chi-Square

We now have at least two statistical tests for 2 x 2 contingency tables, and will soon have
a third—which one should we use? Probably the most common solution is to go with
Pearson's chi-square; perhaps because “that is what we have always done.” In previous
editions of this book I recommended against Fisher's Exact Test, primarily because of the
conditional nature of it. However, in recent years there has been an important growth of
interest in permutation and randomization tests, of which Fisher's Exact Test is an example.
(This approach is discussed extensively in Chapter 18.) I am extremely impressed with the
logic and simplicity of such tests and have come to side with Fisher's Exact Test. In most
cases, the conclusion you will draw will be the same for the two approaches, though this is
not always the case. When we come to tables larger than 2 x 2, Fisher's approach does not
apply, without modification, and there we almost always use the Pearson chi-square. (But
see Howell & Gordon, 1976.)

6.4 Chi-Square for Larger Contingency Tables

The Pugh example involved two variables (Verdict and Fault), each of which had two levels.
We referred to this design as a 2 x 2 contingency table; it is a special case of the more
general R x C designs, where, again, R and C represent the number of rows and columas.
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Table 6.3 Data from Geller, Witmer, and Orebaugh (1976)
(expected frequencies in parentheses)

Location
Instructions Trash can Litter Removed
41 385 477 903
kantrol (61.66) (34398) | (497.36)
Message 80 290 499 869
(59.34) (331.02) (478.64)
121 675 976 1772

As an example of a larger contingency table, consider the study by Geller, Witmer, and
Orebaugh (1976) mentioned in Chapter 5. These authors were studying littering behavior
and were interested, among other things, in whether a message about not littering would be
effective if placed on the handbills that are often given out in supermarkets advertising the
daily specials. To oversimplify a fairly complex study, two of Geller's conditions involved
passing out handbills in a supermarket. Under one condition (Control), the handbills con-
tained only a listing of the daily specials. In the other condition (Message), the handbills
also included the notation, “Please don’t litter. Please dispose of this properly.” At the end
of the day, Geller and his students searched the store for handbills, They recorded the num-
ber that were found in trash cans; the number that were left in shopping carts, on the floor,
and various places where they didn’t belong (denoted litter); and the number that could not
be found and were apparently removed from the premises. The data obtained under the two
conditions are shown in Table 6.3 and are taken from a larger table reported by Geller et al.
Expected frequencies are shown in parentheses and were obtained exactly as they were in
the previous example [E; = (R )(C;)N].
The calculation of x? is carried out just as it was earlier:

7 (0 —E)?
=)
(41 — 61.66)° (385 — 343.98)% (499 — 478.64)*
=T 6l.66 34398 478.64
=125.79

There are two df for Table 6.3 because (R — 1)(C — 1) = (2 — 1}(3 — 1) = 2. The critical
value of y%; = 5.99. Our value of 25.79 is larger than 5.99, so we are led 1o reject Hp and
to conclude that the location in which the handbills were left depended to some extent on
the instructions given. In other words, Instructions and Location are not independent. From
the data, it is evident that when subjects were asked not to litter, a higher percentage of
handbills were thrown in the trash can or taken out of the store, and fewer were left lying in
shopping carts or on floors and shelves,

As we have seen, the chi-square test can be applied to two-dimensional tables of any
size (and, in some situations, tables of more dimensions). The calculations are always the
same. The problem with larger tables, however, is one of interpretation. If a2 x 2 chi-square
is statistically significant, it is usually pretty obvious what the results mean. We just have to
look at the contingency table. But with larger tables, it is not always clear. In the Geller et al.
(1976) example, was chi-square significant because of a disparate distribution in the “litter”
column, or the “trash” column, or in all three columns? There are statistical techniques to
help tease this apart, but they are not common. Often larger contingency tables are collapsed

] ke
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back to 2 x 2 tables for ease of interpretation. We will see a similar kind of issue raised
when we consider odds ratios shortly.

Computer Analyses

Chi-square statistics can be produced by computer programs in two different ways. Suppose
that we had a data file containing Pugh's data on convictions for rape. One column (Fault)
would contain a 1 if that defendant’s lawyer had tried to assign high blame to the victim or
4 0 if he assigned low blame. A second column (Guilt) would contain a 1 if the defendant
was found guilty, and a 0 if not. (Alternatively, we could code the Fault variable as “Little”
or “Much” depending on whether the victim was assigned little or much fault by the attor-
ney. We could also code Guilt as “Guilty” and “Not Guilty.” There would be 358 lines of
data, one for each case. We could then ask SPSS (or almost any other program) to cross
tabulate Fault against Guilt. This analysis is presented in Exhibit 6.1,

Exhibit 6.1 contains several statistics we have not yet discussed. In Exhibit 6.1b, the
likelihood ratio test is one that we shall take up shortly and is simply another approach to
calculating chi-square. The three statistics in Exhibit 6.1¢ (phi, Cramér's V, and the contin-
gency coefficient) will also be discussed later in this chapter, as will the odds ratio shown in
Exhibit 6.1d. Each of these four statistics is an attempt to assess the size of the effect.

If you didn't already have a data file for Pugh's data, you would probably not be eager
to create a file of 358 lines just to calculate a simple chi-square. Fortunately, there is an
alternative approach that is much quicker. Basically, we create one line of data for each

Fault * Guilt Crosstabulation
Count
Guilt
Guilty | Not Guilty | Total
Fault  Little 153 24 177
Much 105 76 181
Total 258 100 358

Exhibit 6.1a Cross tabulation of Fault versus Guilt From
Pugh's data on conviction for rape

Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided} | (1-sided)

Pearson Chi-Square 359307 | 1 000

Continuity Correction® 34.532 1 000

Likelihood Ratio 37.351 1 .000

Fisher's Exact Test 000 000
N of Valid Cases 358

* Computed only for a 2 x 2 table
® () cells (.0%) have expected count less than 5. The minimum expected count is 49.44.

Exhibit 6.1b  Test statistics for analysis of Pugh’s data
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Symmetric Measures
Value | Approx. Sig.
Nominal by Phi 317 000
MNominal Cramer's 317 000
Contingency Coefficient 302 000
N of Valid Cases 358

Exhibit 6.1c Measures of association for Pugh's data

Risk Estimate

95% Confidence
Interval

Value | Lower | Upper

Odds Ratio for Fault

{Little / Much) 4614 2.738 7.776
For cohort Guilt = Guilty | 1.490 1.299 1.709
For-cohort Guilt = 323 214 486
MNotGuilty

N of Valid Cases 358

Exhibit 6.1d Risk estimates on Pugh's data

& Pugh.sav - SPSS Data Editor
File Edt View Data Transform Analyze Graphs Ul
TR
12 Freq e

| Faut | Guit | Freq

1|Much  [Guilty 105.00
2|Much "'ijGm_" 7600|
3lLile  [Guity | 16300[
4|Little [NotGuity = 2400

5 | :

Exhibit 6.2 SPSS data file for analysis of Pugh's experiment

possible cell in the table, and then add a column (here labeled Freq) that reports how many
observations fell in that cell. A screen shot of such a table is shown in Exhibit 6.2.

Once we have entered the frequencies, simply go to Data/Weight cases menu and
instruct SPSS to weight each combination of Fault and Guilt by the Freq variable. Similar
commands can be carried out in most software. The rest of the calculations can then be
carried out just as we did earlier.

Exhibit 6.1b contains the printout of the test statistics for testing the null hypothesis of
independence between Fault and Guilt. You can see that we obtained the same value of x*
(35.93) that we obtained earlier by hand. The next entry is the value of x* with a continuity
correction, as we discussed earlier. 1 suggest ignoring this. Fisher's Exact Test follows, and
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here it leads to the same conclusion as Pearson's chi-square. (You will not find Fisher's
Exact Test printed out with larger tables because it was not designed for them nor will you
see a chi-square value printed in column 2 because the test does not produce one.)

small Expected Frequencies

small expected
frequency

One of the most important requirements for using the Pearson chi-square test concerns the
size of the expected frequencies. We have already met this requi briefly in discussing
corrections for continuity. Before defining more precisely what we mean by small, we
should examine why a small expected frequency causes so much trouble.

For a given sample size, there are often a limited number of different contingency tables
that you could obtain and, thus, a limited number of different values of chi-square. If only a
few different values of x 3, are possible, then the x * distribution, which is continuous, cannot
provide a reasonable approximation to the distribution of our statistic. We cannot closely fita
discrete distribution having relatively few values with a continuous one. Those cases that
result in only a few possible values of x},, however, are those with small expected frequen-
cies in one or more cells. (This is directly analogous to the fact that if you flip a coin three
times, there are only four possible values for the number of heads, and the resulting sampling
distribution certainly cannot be satisfactorily approximated by the normal distribution.)

We have seen that difficulties arise when we have small expected frequencies, but the
question of how small is small remains. Those conventions that do exist are conflicting and
have only minimal claims to preference over one another. Probably the most common is to
require that all expected frequencies should be at least five, This is a conservative position
and I don't feel overly guilty when [ violate it. Bradley and colleagues (1979) ran a
computer-based sampling study. They used tables ranging in size from 2 x 20 4 x 4 and
found that for those applications likely to arise in practice, the actual percentage of Type 1
errors rarely exceeds .06, even for tofal samples sizes as small as 20, unless the row or col-
umn marginal totals are drastically skewed. Camilli and Hopkins (1979) demonstrated that
even with quite small expected frequencies, the test produces few Type errors in the 2 x 2
case as long as the total sample size is greater than or equal to eight, but they, and Overall
(1980), point to the extremely low power to reject a false Hy that such tests possess. With
small sample sizes, power is more likely to be a problem than are inflated Type 1 error rates.

One major advantage of Fisher's Exact Test is that it is not based on the x* distribution
and, thus, is not affectad by a lack of continuity. One of the strongest arguments for that test
is that it applies well to cases with small expected frequencies,

6.5 Chi-Square for Ordinal Data

Chi-square is an important statistic for analyzing categorical data, but it can sometimes fall
short of what we need. If you apply chi-square to a contingency table, and then rearrange
one or more rows or columns and caleulate chi-square again, you will arrive at exactly
the same answer, That is as it should be because chi-square does not take the ordering of the
rows or columns into account.

But what do you do if the order of the rows or columns does make a difference? How
can you take that ordinal information and make it part of your analysis? An interesting
example of just such a situation was provided in a query that I received from Jennifer
Mahon at the University of Leicester, in England.

Ms. Mahon collected data on the treatment for eating disorders. She was interested in
how likely participants were to remain in treatment or drop out, and she wanted to examine
this relative to the number of traumatic events they had experienced in childhood. Her
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general hypothesis was that participants who had experienced more traumatic events during
childhood would be more likely to drop out of treatment. Notice that her hypothesis treats
the number of traumatic events as an ordered variable, which is something that chi-square
ignores. There is a solution to this problem, but it is more appropriately covered after we
have talked about correlations. I will come back to this problem in Chapter 10 and show you
one approach. (Many of you could skip now to Chapter 10, Section 10.4, and be able to fol-
low the discussion.) I mention it here because it comes up most often when discussing x*.

6.6 Summary of the Assumptions of Chi-Square

assumptions

of x2

Because of the widespread misuse of chi-square still prevalent in the literature, it is impor-
tant to pull together in one place the underlying assumptions of x*. For a thorough discus-
sion of the misuse of x*, see the paper by Lewis and Burke (1949) and the subsequent
rejoinders to that paper. These articles are not yet out of date, although it has been more than
50 years since they were written. A somewhat more recent discussion of many of the issues
Lewis and Burke (1949) raised can be found in Delucchi (1983).

The Assumption of Independence

At the beginning of this chapter, we assumed that observations were independent of one
another, The word independence has been used in two different ways in this chapter, and it is
important to keep these two uses separate. A basic assumption of x* deals with the indepen-
dence of observations and is the assumption, for example, that one participant’s choice
among brands of coffee has no effect on another participant's choice. This is what we are
referring to when we speak of an assumption of independence. We also spoke of the inde-
pendence of variables when we discussed contingency tables. In this case, independence is
what is being tested, whereas in the former use of the word, it is an assumption. So, we want
the observations to be independent and we are testing the independence of variables.

It is not uncommon to find cases in which the assumption of independence of observa-
tions is violated, usually by having the same participant respond more than once. A typical
illustration of the violation of the independence assumption occurred when a former student
categorized the level of activity of each of five animals on each of four days. When he was
finished, he had a table similar to this:

Activity
High Medium Low Total
10 7 3 20

This table looks legitimate until you realize that there were only five animals, and thus, each
animal was contributing four tally marks toward the cell entries. If an animal exhibited high
activity on Day 1, it is likely to have exhibited high activity on other days. The observations
are not independent, and we can make a better-than-chance prediction of one score know-
ing another score. This kind of error is easy to make, but it is an error nevertheless. The best
guard against it is to make certain that the total of all observations (N) equals precisely the
number of participants in the experiment.

Inclusion of Nonoccurrences

Although the requirement that nonoccurrences be included has not yet been mentioned
specifically, it is inherent in the derivation. It is probably best explained by an example.

nonoccurrences
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Suppose that out of 20 students from rural areas, 17 were in favor of having daylight sav-
ings time (DST) all year. Out of 20 students from urban areas, only 11 were in favor of DST
on a permanent basis. We want to determine if significantly more rural students than urban
students are in favor of DST. One erroneous method of testing this would be to set up the
following data table on the number of students favoring DST:

Rural Urban  Total
Observed 17 11 28
Expected 14 14 28

We could then compute x* = 1.29 and fail to reject Hy. This data table, however, does not
take into account the negative responses, which Lewis and Burke (1949) call nonoceur-
rences. In other words, it does not include the numbers of rural and urban students opposed
to DST. However, the derivation of chi-square assumes that we have included both those
opposed to DST and those in favor of it. So we need a table such as this one:

Rural Urban
Yes 17 11 28
No 3 9 12
20 20 40

Now x? = 4.29, which is significant at « = .03, resulting in an entirely different interpre-
tation of the results.

Perhaps a more dramatic way to see why we need to include nonoccurrences can be
shown by assuming that 17 out of 2,000 rural students and 11 out of 20 urban students
preferred DST, Consider how much different the interpretation of the two tables would be.
Certainly, our analysis must reflect the difference between the two data sets, which would
not be the case if we failed to include nonoccurrences.

Failure to consider the nonoccurrences invalidates the test and reduces the value of x*,
leaving you less likely to reject Hp. Again, you must be sure that the total (N) equals the
number of participants in the study.

6.7 One- and Two-Tailed Tests

People are often confused about whether chi-square is a one- or a two-tailed test. This
confusion results from the fact that there are different ways of defining what we mean by a
one- or a two-tailed test. If we think of the sampling distribution of x*, we can argue that x*
is a one-tailed test because we reject Hp only when our value of x? lies in the extreme right
tail of the distribution. On the other hand, if we think of the underlying data on which our
obtained x° is based, we could argue that we have a two-tailed test. If, for example, we
were using chi-square to test the fairmess of a coin, we would reject Hy if it produced
too many heads or if it produced too many tails because either event would lead to a large
value of x*.

The preceding discussion is not intended to start an argument about semantics (it does
not really matter whether you think of the test as one-tailed or two); rather, it is intended to
point out one weakness of the chi-square test, so that you can tuke this into account. The
weakness is that the test, as normally applied, is nondirectional. To take a simple example,
consider the situation in which you want to show that increasing amounts of quinine added
to an animal’s food make it less appealing. You take 90 rats and offer them a choice of three
bowls of food that differ in the amount of quinine that has been added. You then count the
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number of animals selecting each bowl of food. Suppose the data are

Amount of Quinine

Small Medium Large
39 30 21

The computed value of x? is 5.4, which, on 2 df, is not significant at p < .05.

The important fact about the data is that any of the six possible configurations of the
same frequencies (such as 21, 30, 39) would produce the same value of x*, and you receive
no credit for the fact that the configuration you obtained is precisely the one that you
predicted. Thus, you have made a mulri-tailed test when you actually have a specific
prediction of the direction in which the totals will be ordered. I referred to this problem a
few pages back when discussing a problem Jennifer Mahon raised. A solution to this prob-
lem will be given in Chapter 10 (Section 10.4), where I discuss creating a correlational mea-
sure of the relationship between the two variables.

6.8 Likelihood Ratio Tests

likelihood ratios

An alternative approach to analyzing categorical data is based on likelihood ratios. For
large sample sizes, the two tests are equivalent, though for small sample size the standard
Pearson chi-square is thought to be better approximated by the exact chi-square distribution
than is the likelihood ratio chi-square (Agresti, 1990). Likelihood ratio tests are heavily
used in log-linear models for analyzing contingency tables because of their additive proper-
ties. Log-linear models will be discussed in Chapter 17. Such models are particularly
important when we want to analyze multidimensional contingency tables. Such models are
being used more and more, and you should be exposed at least minimally to such methods.

Without going into detail, the general idea of a likelihood ratio can be described quite
simply. Suppose we collect data and calculate the probability or likelihood of the data
occurring given that the null hypothesis is true. We also caleulate the likelihood that the data
would occur under some alternative hypothesis (the hypothesis for which the data are most
probable). If the data are much more likely for some alternative hypothesis than for Hg, we
would be inclined to reject Hy. However, if the data are almost as likely under Hj as they are
for some other alternative, we would be inclined to retain Hy. Thus, the likelihood ratio (the
ratio of these two likelihoods) forms a basis for evaluating the null hypothesis.

Using likelihood ratios, it is possible to devise tests, frequently referred to as “maximum
likelihood x?," for analyzing both one-dimensional arrays and contingency tables. For the
development of these tests, see Mood (1950) or Mood and Graybill (1963).

For the one-dimensional goodness-of-fit case,

0
Xic-y =23 Oiln (E‘)

where 0; and E; are the observed and expected frequencies for each cell and “In” denotes the
natural logarithm (logarithm to the base ¢). This value of x* can be evaluated using the stan-
dard table of x* on € — 1 degrees of freedom.

For analyzing contingency tables, we can use essentially the same formula,

-
X{lx-mc-n =12 Z Oyln (_E_u)
v
where O and Ej; are the observed and expected frequencies in each cell. The expected
frequencies are obtained just as they were for the standard Pearson chi-square test. This
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statistic is evaluated with respect to the x* distribution on (R — 1)(C — 1) degrees of
freedom.

As an illustration of the use of the likelihood ratic test for contingency tables, consider
the data found in the Pugh (1983) study. The cell and marginal frequencies follow:

Verdict
Fault Guilty Not Guilty
Low 153 24 177
High 105 76 181
258 100 358

"

0,
X =2):o,,1n(£—:j)

153 24 105 76
- — )+ 24— Ty T
g [153 = ( 12?.559) - (49,441) S (130-441) i (50559)}
= 2[153(0.1819) + 24(~0.7227) + 105(~0.2170) + 76(0.4076)]
= 2[18.6785] = 37.36

This answer agrees with the likelihood ratio statistic found in Exhibit 6.16. Itisa x* on 1 df,
and because it exceeds x%<(1) = 3.84, it will lead to rejection of Hy. The decision of the
juror depends in part on how the victim is portrayed.

6.9 Effect Sizes

d-family

r-family

measures of
association
An Example

prospective
study

The fact that a relationship is “staustically -significant” doesn't tell us very much about
whether it is of practical significance. The fact that two independent variables are not statis-
tically independent does not mean that the lack of independence is important or worthy of
our attention. In fact, if you allow the sample size to grow large enough, almost any two
variables would likely show a statistically significant lack of independence.

‘What we need, then, are ways to go beyond a simple test of significance to present one
or more statistics that reflect the size of the effect we are looking at. There are two different
types of measures designed to represent the size of an effect. One type, called the d-fumily
by Rosenthal (1994), is based on one or more measures of the differences between groups
or levels of the independent variable. For example, as we will see in a moment, the proba-
bility of being found guilty of rape is about 30% higher for dependents in Pugh’s Low Fault
condition than for those in the High Fault condition. The other type of measure, called the
r-family, represents some sort of correlation coefficient between the two independent vari-
ables. We will discuss correlation thoroughly in Chapter 9, but I will discuss these measures
here because they are appropriate at this time. Measures in the r~family are often called
“measures of association.”

An important study of the beneficial effects of small daily doses of aspirin on reducing
heart attacks in men was reported in 1988. More than 22,000 physicians were adminis-
tered aspirin or a placebo, and the incidence of later heart attacks was recorded. The data
follow in Table 6.4, Notice that this design is a prospective study because the treatments
(aspirin versus no aspirin) were applied and then furre outcome was determined. (A
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retrospective
study

d-family: Risks

risk

risk difference

risk ratio

relative risk

Table 6.4 The effect of aspirin on the incidence of

heart attacks
Outcome
Heart No Heart
Attack Attack
Aspirin 104 10,933 11,037
Placebo 189 10,845 11,034
293 21,778 22,071

retrospective study would select people who had, or had not, experienced a heart artack
and then look backward in time to see whether they had been in the habit of taking aspirin
in the past.)

For these data, x* = 25.014 on one degree of freedom, which is statistically significant
at o = .03, indicating that there is a relationship between whether or not one takes aspirin
daily and whether one later has a heart attack.*

and Odds

Two important concepts with categorical data, especially for 2 x 2 tables, are the concepts
of risks and odds. These concepts are closely related, and often confused, but they are basi-
cally very simple.

For the aspirin data, 0.94% (104/11, 037) of people in the aspirin group and 1.71%
(189/11, 034) of those in the control group suffered a heart attack during the study. (Unless
you are & middle-aged male worrying about your health, the numbers look rather small. But
they are important.) These two statistics are commonly referred to as risk estimates because
they describe the risk that someone with, or without, aspirin will suffer a heart attack, Risk
measures offer a useful way of looking at the size of an effect.

The risk difference is simply the difference between the two proportions. In our exam-
ple, the difference is 1.71% — 0.94% = 0.77%. Thus, there is about three-quarters of a per-
centage point difference between the two conditions. Put another way, the difference in risk
between a male taking aspirin and one not taking aspirin is about three-quarters of 1%. This
may not appear o be very large, but keep in mind that we are talking about heart attacks,
which are serious events.

One problem with a risk difference is that its magnitude depends on the overall level of
risk. Heart attacks are quite low risk events, so we would not expect a huge difference
between the two conditions. (In contrast, when we looked at Pugh's data on convictions for
rape, where the probability of being convicted was quite high, there was a lot of room for
the two conditions to differ, and we saw a 30 percentage point difference. Does that mean
that Pugh’s study found a much larger effect size? Well, it depends—it certainly did with
respect to risk difference.)

Another way to compare the risks is to form a risk ratio, also called relative risk, that
is just the ratio of the two risks. For the heart attack data, the risk ratio is

RR = Riskyongsisin/ Riskusgin = 1.71%/0.94% = 1.819

4 It is important to note that, although taking aspirin daily is associated with a lower rate of heart attack, more
recent data have shown that there are important negative side effects. Current literature suggests that Omega-3 fish
ail is at least as effective with fewer side effects.

odds

odds ratio
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Thus, the risk of having a heart attack if you do not take aspirin is 1.8 times higher than if
you do take aspirin. That strikes me as quite a difference.

We must consider a third measure of effect size, and that is the odds ratio. At first glance,
odds and odds ratios look like risk and risk ratios, and they are often confused, even by peo-
ple who know better. (In a previous edition, I referred to odds, but described them as risks,
much to my chagrin.) Recall that we defined the risk of a heart attack in the aspirin group as
the number having a heart attack divided by the total number of people in that group. (e.g.,
104/11,037 = 0.0094 = 0,94%.) The odds of having a heart attack for a member of the
aspirin group is the number having a heart attack divided by the number not having a heart
arack, (e.g., 104/10,933 = 0.0095.) The difference (though very slight) comes in what we
use as the denominator—risk uses the total samiple size and is thus the proportion of people
in that condition who experience a heart attack. Odds uses as a denominator the number not
having a heart attack and is thus the ratio of the number having an attack versus the number
not having an attack. Because the denominators are so much alike in this example, the
results are almost indistinguishable. That is certainly not always the case. In Pugh’s exam-
ple, the risk of being convicted of rape in the low fault condition are 153/177 = 0.864 (86%
of the cases are convicted), whereas the odds of being convicted in the low fault condition
are 153/24 = 6.375 (the odds of being convicted are 6.4 times the odds of being found
innocent).

Just as we can form a risk ratio by dividing the two risks, we can form an odds ratio by
dividing the two odds. For the aspirin example, the odds of heart attack given that you did
not take aspirin were 189/10,845 = 0.017. The odds of a heart attack given that you did
take aspirin were 104/10,933 = 0.010. The odds ratio is simply the ratio of these two odds
and is

OR = Odds | No Aspirin _ 0.0174
T Odds|Aspirin - 0.0005

Thus, the odds of a heart attack without aspirin are 1.83 times higher than the odds of a heart
attack with uspirin®

Why do we have to complicate things by having both odds ratios and risk ratios because
they often look very much alike? That is a very good question, and it has some good
answers. Risk is something that I think most of us understand. When we say the risk of
having a heart attack in the No Aspirin condition is 0.0171, we are saying that 1.7% of the
participants in that condition had a heart attack, and that is pretty straightforward. When we
say that the odds of a heart attack in that condition are 0.0174, we are saying that the
chances of having a heart attack are 1,7% of the chances of not having a heart attack. That
may be a popular way of setting bets on race horses, but it leaves me dissatisfied. So why
have an odds ratio in the first place?

The odds ratio has at least two things in its favor. In the first place, it can be calculated
in situations in which a true risk ratio cannot be. In a retrospective study, where we find a
group of people with heart attacks and another group of people without heart attacks, and
look back to see if they took aspirin, we can't really calculate risk. Risk is future oriented.
If we give 1,000 people aspirin and withhold it from 1,000 others, we can look at these
people 10 years down the road and calculate the risk (and risk ratio) of heart attacks. But if

= 1.83

® In computing an odds ratio, there is no rule about which odds go in the numerator and which in the denominator.
It depends on i Where ble, 1 prefer to put the larger value in the numerator to make the ratio

come out greater than 1.0, simply because [ find it easier to talk about that way. If we reversed them in this
example, we would find OR = 0.546, and conclude that your odds of having a heart attack in the aspirin condi-
tion are about half of what they are in the No Aspirin condition. That is simply the inverse of the original OR
(0.546 = 1/1.83),
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we take 1,000 people with (and without) heart attacks and look backward, we can’t really
calculate risk because we have sampled heart attack patients at far greater than their normal
rate in the population (50% of our sample has had a heart attack, but certainly 50% of the
population does not suffer from heart attacks). But we can always calculate odds ratios.
And, when we are talking about low probability events, such as having a heart attack, the
odds ratio is usually a very good estimate of what the risk ratio would be.® The odds ratio is
equally valid for prospective, retrospective, and cross-sectional sampling designs. That is
important.

A second important advantage of the odds ratio is that taking the natural log of the odds
ratio [In(OR)] gives us a statistic that is extremely useful in a variety of situations. Two of
these are logistic regression and log-linear models, both of which are discussed later in the
book. 1 don’t expect most people 1o be excited by the fact that a logarithmic transformation
of the odds ratio has interesting statistical properties, but that is a very important point
nonetheless,

r-family: Phi and Crameér’'s V

Phi (¢)

phi (¢)

The measures that we have discussed are sometimes called d-family measures because they
focus on comparing differences between conditions—either by calculating the difference
directly or by using ratios of risks or odds. An older, and more traditional set of measures,
sometimes called “measures of association,” but now frequently called “r-family measures”
looks at the correlation between two variables. We won't come to correlation until Chap-
ter 9, but [ would expect that you already know enough about correlation to understand what
follows.

There are a great many measures of association, and I have no intention of discussing
most of them. One of the nicest discussions of these can be found in Nie, Hull, Jenkins,
Steinbrenner, and Bent (1970). (If your instructor is very old—like me—he or she probably
remembers it fondly as the old “maroon SPSS manual.” It is such a classic that it is very
likely to be available in your university library or through interlibrary loan.)

In the case of 2 x 2 tables, a correlation coefficient that we will consider in Chapter 10
serves as a good measure of association. This coefficient is called phi (), and it represents
the correlation between two variables, each of which is a dichotomy (a dichotomy is a vari-
able that takes on one of two distinct values. ). If we coded Aspirin as 1 or 2, for Yes and No,
and coded Heart Attack as 1 for Yes and 2 for No, and then correlated the two variables
(see Chapters 9 and 10), the result would be phi. (It doesn’t even matter what two numbers
we use as values for coding, as long as one condition always gets one value and the other
always gets a different, but consistent, value.)

An easier way to calculate & for these data is by the relation

X

*=yN
For the aspirin data in Table 6.4, x* = 25.014, ¢ = /25.014/22,071 = .034. That does not
appear to be a very large correlation, but we are speaking about a major life-threatening
evenl, and even a small correlation can be meaningful.

% The odds ratio can be defined as OR = RR{;{ﬁ). where OR = odds ratio, RR. = relative risk, p| is the popula-
tion propartion of hesrt attacks in one group, and’ pg is the population proportion of heart antacks in the ather group.
When these two proportions are close (0 0, numerator and denominator nearly cancel each other and OR = RR.
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Cramer’'s V
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The difficulty with phi is that it applies only to 2 x 2 tables and, therefore, is not of any use with
larger contingency tables. Cramér (1946) proposed a way around this problem by defining

-
¥= Nik—1)

where N is the sample size and k is defined as the smaller of R and C.

Cramér’s V can be seen as a simple extension of &. Note that when k = 2, it is . Its
usefulness applies to larger tables. We can calculate Cramér's V for the data on littering in
Table 6.3 as follows:

. X [ 2579
V'\/N(k-n‘J(l??z;m"'m

The problem with V is that it is hard to give it a simple intuitive interpretation when there
are more than two categories and they do not fall on an ordered dimension. There is a fairly
technical explanation, but 1 am not going into it here, and 1 doubt that it would be very
enlightening at this point.

T am not happy with the r-family of measures simply because I don’t think that they have
a meaningful interpretation in most situations. It is one thing to use a d-family measure like the
odds ratio and declare that the odds of having a heart arack if you don't take aspirin
are 1.83 times higher than the odds of having a heart attack if you do not take aspirin. I think
that most people can understand what that statement means. But to use an r-family measure,
such as phi, and say that the correlation between aspirin intake and heart attack is .034 doesn't
seem to be telling them anything useful. (And squaring it and saying that aspirin usage
accounts for 0.1% of the variance in heart attacks is even less helpful.)  would suggest that you
stay away from the older r-family measures uhless you really have a good reason to use them.

Effect Sizes for Larger Tables

Measures like odds ratios are most easily understood with 2 x 2 ables because it is clear
what the odds represent. Things are very much messier with larger tables. We will see this
distinction between two levels and multiple levels in several places in this book. If you think
clearly about what it is you want to convey to your audience, [ suspect that you will gener-
ally find that you really want to compare only two things. For example, in the littering study,
you might want to compare the number of flyers littering the floor with the number of flyers
that took themselves off some place—such as the trash or out of the store. I would suggest
that after computing the overall chi-square for the 2 x 3 table, you simply recompile your
contingency table into “Litter” and “Non-litter” and treat it as a 2 x 2. That is really what
you probably want. And if that is the case, risk ratios and odds ratios will do very nicely.
(When we come to the analysis of variance in Chapter |1, which looks a million miles away
from contingency tables, you will see that frequently the questions we most care about also
come down to comparing two groups or sets of groups.)

6.10 Measures of Agreement

We should discuss one more measure. It is not really a measure of effect size, like the pre-
vious measures, but it is an important statistic when you want to ask about the agreement
between judges.
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Kappa (k)—A Measure of Agreement

kappa ()

percentage of
agreement

An important statistic that is not based on chi-square but that does use contingency tables is
kappa (k), commonly known as Cohen’s kappa (Cohen, 1960). This statistic measures
interjudge agreement and is often used when we want to examine the reliability of ratings.

Suppose we asked a judge with considerable clinical experience to interview 30 adoles-
cents and classify them as exhibiting (1) no behavior problems, (2) internalizing behavior
problems (e.g., withdrawn), and (3) externalizing behavior problems (e.g., acting out). Any-
one reviewing our work would be concerned with the reliability of our measure—how do
we know that this judge was doing any better than flipping a coin? As a check, we ask a sec-
ond judge to go through the same process and rate the same adolescents. We then set up a
contingency table showing the agreements and disagresments between the two judges. Sup-
pose the data are those shown in Table 6.5.

Table 6.5 Classification of behavior problems by two judges

Judge |
Judge Il Mo Problem Internalizing Externalizing Total
No Problem 15 (10.67) 2 3 20
Internalizing 1 3 (1.20) 2 ] 6
Externalizing 0 1 3 (LOT)
Total 16 ] 8 30

Ignore the values in parentheses for the moment. In this table, Judge I classified 16 ado-
lescents as exhibiting no problems, as shown by the total in column 1., Of those 16, Judge I1
agreed that 15 had no problems, but also classed 1 of them as exhibiting internalizing
problems and 0 as exhibiting externalizing problems. The entries on the diagonal (15, 3, 3)
represent agreement between the two judges, whereas the off-diagonal entries represent
disagreement.

A simple (but unwise) approach to these data is to calculate the percentage of agreement.
For this statistic, all we need 1o say is that out of 30 total cases, there were 21 cases (15 + 3 +
3) where the judges agreed. Then 21/30 = 0.70 = 70% agreement, This measure has prob-
lems, however. Most adolescents in our sample exhibit no behavior problems, and both judges
are (correctly) biased toward a classification of No Problem and away from the other classifi-
cations. The probability of No Problem for Judge 1 would be estimated as 16/30 = .53, The
probability of No Problem for Judge Il would be estimated as 20/30 = .67. If the two judges
operated by pulling their diagnoses out of the air, the probability that they would both classify
the same case as No Problem is .53 x .67 = .36, which for 30 judgments would mean that
36 % 30 = 10.67 agreements on No Problem alone, purely by chance.

Cohen (1960) proposed a chance-corrected measure of agreement known as kappa. To
calculate kappa, we first need to calculate the expected frequencies for each of the diagonal
cells assuming that judg are independent. We calculate these the same way we calcu-
late the standard chi-square test. For example, the expected frequency of both judges
assigning a classification of No Problem, assuming that they are operating at random, is
(20 x 16)/30 = 10.67. For Internalizing, it is (6 x 6)/30 = 1.2, and for Externalizing, itis
(4 = 8)/30 = 1.07, These values are shown in parentheses in the table,

We will now define kappa as

e Tf-2fs
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where fp represents the observed frequencies on the diagonal and fr represents the
expected frequencies on the diagonal. Thus

Y fo=15+3+3=21
and
3 fe = 1067+ 1.20+1.07 = 12.94.

Then
21-1294 806 _
*T30-1204 T 1706
Naotice that this coefficient is considerably lower than the 70% agreement figure that we just
calculated. Instead of 70% agreement, we have 47% agreement after correcting for chance.
If you examine the formula for kappa, you can see the correction that is being applied.
In the numerator we subtract, from the number of ag the ber of agn
that we would expect merely by chance. In the denominator, we reduce the total number of
judgments by that same amount. We then form a ratio of the two chance-corrected values.
Cohen and others have developed statistical tests for the significance of kappa. How-
ever, ils significance is rarely the issue. If kappa is low enough for us to even question its
significance, the lack of agreement among our judges is a serious problem.
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6.11 Writing Up the Results
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We will take as our example Pugh's study of rape convictions (1983), If you were writing
up these results, you would probably want to say something like the following:

In examining the question of whether a defense lawyer's attempt to place blame on the
victim of rape would influence a jury’s decision in a rape case, jury participants were
presented with a situation in which the victim was characterized by the defense as either
partly responsible for the rape or not responsible. The jurors were then asked to make a
judgment about whether the defendant was guilty or not guilty of the crime, When the
victim was portrayed as low in fault, 86% of the time the defendant was judged to be
guilty, When the victim was portrayed as high in fault, the defendant was judged guilty
only 58% of the time. A chi-square test of the relationship between Fault and Guilt pro-
duced x*(1) = 35.93, which is statistically significant at p < .05. This is associated
with an odds ratio of 4,61, indicating that the odds of being found guilty of rape are
more than 4.5 times higher in the condition in which the victim is portrayed as not bear-
ing fault for the rape. The odds ratio would indicate that we are speaking of a meaning-
ful difference between the two conditions.

Chi-square (x*) (Introduction)

Gamma function (6.1)
Chi-square test (6.2)
Goodness-of-fit test (6.2)
Observed frequencies (6.2)

Pearson's chi-square (Introduction)
Chi-square distribution (x*) (6.1)

Yates's correction for continuity (6.4)
Fixed marginals (6.4)

Small expected frequency (6.4)
Assumptions of x* (6.6)
Nonoccurrences (6.6)

Likelihood ratios (6.8)

d-family (6.9)

Expected frequencies (6.2)
Tabled distribution of x* (6.2)
Contingency table (6.3)
Marginal totals (6.3)

Cell (6.3}

Row total (6.3)

Column total (6.3)
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r-family (6.9)

Measures of association (6.9)
Prospective study (6.9)
Retrospective study (6.9)
Risk (6.9)

Exercises

Risk difference (6.9) Phi (¢) (6.9)

Risk ratio (6.9) Cramér’s V (6.9)

Relative risk (6.9) Kappa (x) (6.10)

Odds (6.9) Percentage of agreement (6.10)
Odds ratio (6.9)

6.1

62

6.3

6.4

6.5

6.6

6.7

6.8

The chairperson of a psychology department suspects that some of her faculty members are
more popular with students than are others. There are three sections of introductory psy-
chology, taught at 10:00 a.m., 11:00 a.m., and 12:00 p.m. by Professors Anderson, Klatsky,
and Kamm. The number of students who enroll for each is

Professor Anderson Professor Klatsky Professor Kamm
32 25 10

State the null hypothesis, run the appropriate chi-square test, and interpret the results.

From the point of view of designing a valid experiment (as opposed to the arithmetic of
calculation), there is an important difference between Exercise 6.1 and the examples used in
this chapter. The data in Exercise 6.1 will not really answer the question the chairperson
wants answered. What is the problem, and how could the experiment be improved?

You have a theory that if you ask subjects to sort on characteristics of people (e.g.,
“| eat too fast”) into five piles ranging from “not at all like me™ to “very much like me.” the
percentage of items placed in each of the five piles will be approximately 10, 20, 40, 20, and
10. You have one of your friend’s children sort 50 statements, and you obtain the following
data: [8, 10, 20, 8, 4]. Do these data support your hypothesis?

To what population does the answer 1o Exercise 6.3 generalize? (Hint: From what population
of ohservations might these observations be thought to be randomly sampled?)

In a classic study by Clark and Clark (1939), African American children were shown black
dolls and white dolls and were asked to select the one with which they wanted to play. Of 252
children, 169 chose the white doll and 83 chose the black doll. What can we conclude about
the behavior of these children?

Thirty years after the Clark and Clark study, Hraba and Grant (1970) repeated the study
referred to in Exercise 6.5. The studies were not exactly equivalent, but the results were
interesting. Hraba and Grant found that of 8% African American children, 28 chose the white
doll and 61 chose the black doll. Run the appropriate chi-square test on their data and inter-
pret the results.

Combine the data from Exercises 6.5 and 6.6 into a two-way contingency table and run the
appropriate test. How does the question that the two-way classification addresses differ from
the questions addressed by Exercises 6.5 and 6.6?

We know that smoking has all sorts of ill effects on people; among other things, there is
evidence that it affects fertility. Weinberg and Gladen (1986) examined the effects of smok-
ing and the ease with which women become pregnant. The researchers asked 586 women
who had planned pr:gmncleﬁ how many menstrual cycles it had taken for them to become
pregnant after disc g cf ion, Weinberg and Gladen also sorted the women into
whether they were srnnkm or nunsmukm The d.s.la follow.

1cycle 2 cycles 3+ cycles  Total

Smokers 29 16 55 100
Nonsmokers 198 107 181 486
Total 227 123 236 586

6.9

6.10

6.11

612

6,13
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Does smoking affect the ease with which women become [
smoking as a birth control device, regardless of your answer.)

In discussing the correction for continuity, we referred to the idea of fixed marginals, mean-
ing that a replication of the study would produce the same row and column totals. Give an
example of a study in which

& No marginal totals are fixed.

b, One set of marginal totals is fixed.

c.  Both sets of marginal totals (row and column) could reasonably be considered to be
fixed. (This is a hard one.)

Howell and Huessy (1981) used a rating scale to classify children in a second-grade class as
showing or not showing behavior commonly associated with attention deficit disorder
(ADD). The researchers then classified these same children again when they were in fourth
and fifth grades. When the children reached the end of the ninth grade, the researchers ex-
amined school records and noted which children were enrolled in remedial English. In the
following data, all children who were ever classified as exhibiting behavior associated with
ADD have been combined into one group (labeled ADD):

? {1 do not rec i

Remedial English Monremedial English

MNormal 22 187 209
ADD 19 74 93
41 261 3z

Does behavior during elementary school affect class assignment during high school?

Use the data in Exercise 6,10 to demonstrate how chi-square varies as a function of sample size.

& Double each cell entry and recompute chi-square.

b, What does your answer to (a) say about the role of the sample size in hypothesis
testing?

In Exercise 6.10, children were classified as those who never showed ADD behavior and

those who showed ADD behavior at least once in the second, fourth, or fifth grade. If we do
not collapse across categories, we obtain the following data:

2nd & 2nd & 4th & 2nd, 4th, &
Never 2nd 4th 4th 5th 5th 5th 5th
Remedial 22 2 1 3 2 4 3 4
Nonrem. 187 17 11 9 16 7 8 6

4. Run the chi-square test.
b, What would you conclude, ignoring the small expected frequencies?

¢.  How comfortable do you feel with these small expected frequencies? If you are not
comfortable, how might you handle the problem?

In 2000, the State of Vermont legislature approved a bill authorizing “civil unions™ between
gay or lesbian partners. This was a very contentious debate with very serious issues raised by
both sides. How the vote split along gender lines may tell us something important about the
different ways in which males and females looked at this issue. The data follow. What would
you conclude from these data?

Vote
Yes MNo Total
Women 35 9 44
Men 60 41 101

Total 95 50 145
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6.14

6.16

6.17

Stress has long been known to influence physical health. Visintainer, Volpicelli, and Seligman
(1982) investigated the hypothesis that rats given 60 trials of inescapable shock would be
less likely later to reject an implanted tumor than would rats that had received 60 trials of
escapable shock or 60 no-shock trials, The researchers obtained the following data:

Inascapable
Shock Escapable Shock Mo Shock
Reject 8 19 18 45
No Reject 22 11 15 48
30 30 33 93

‘What could Visintainer et al. conclude from the results?

Darley and Latané (1968) asked subjects to participate in a discussion carried on over an
intercom. Aside from the experimenter to whom they were speaking, subjects thought that
there were zero, one, or four other people (bystanders) also listening over intercoms. Partway
through the di ion, the experi feigned serious illness and asked for help. Darley
and Latané noted how often the subject sought help for the experimenter as a function of the
number of supposed bystanders, The data follow:

Sought Assistance

Yes No
Number of i 2 13
16 10 26
Bystanders
4 9 13
31 21 52

What could Darley and Latané conclude from the results?

In a study similar to the one in Exercise 6.15, Latané and Dabbs (1975) had a confederate
enter an elevator and then “accidentally” drop a handful of pencils. They then noted whether
bystanders helped pick them up. The data tabulate helping behavior by the gender of the
bystander:

Gender of Bystander

Female Male
Help 300 370 670
No Help 1003 950 1953
1303 1320 2623

What could Latané and Dabbs conclude from the data? (Note that when we collupse over gen-
der, only about one-guarter of the bystanders helped. That is not relevant to the question, but
it is an interesting finding that could easily be missed by routine computer-based analyses.)
In a study of eating disorders in adolescents, Gross (1985) asked each of her subjects
whether they would prefer to gain weight, lose weight, or maintain their present weight.
(Mote: Only 12% of the girls in Gross's sample were actually more than 15% above their nor-
mative weight—a common cutoff for a label of “overweight™) When she broke down the
data for girls by race (African American versus white), she obtained the following results
(other races have been omitted because of small sample sizes):

Reducers Maintainers  Gainers

White 52 152 31 535
African American 47 28 24 99

99 180 55 634

6.18
6.19
6.20

6.21

6.23
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4. What conclusions can you draw from these data?

b.  Ignoring race, what conclusion can you draw about adolescent girls” attitudes toward
their own weight?

Use the likelihood ratio approach to analyze the data in Exercise 6.10.

Use the likelihood ratio approach to analyze the data in Exercise 6.12.

Would it be possible to calculate a one-way chi-square test on the data in row 2 of the table

in Exercise 6,127 What hypothesis would you be testing if you did that? How would that

hyputhesis differ from the one you tested in Exercise 6.127

Suppose we asked a group of 40 subjects whether they liked Monday Night Football, made

them watch a game, and then asked them again, We would record the data as follows:

Fro Con
Before 30 10 40
After 15 5 40
45 35 8O

Would chi-square caleulated on such a table be appropriate? Why or why not?

As an alternative approach to the data in Exercise 6.21, you might find that after watching the
game 20 people switched from Pro to Con and 5 people switched from Con to Pro. Thus, you
can run 4 one-way chi-square test on the 20 + 5 = 25 subjects who changed their opinion.
(This is a test suggested by McNemar (1969) and is often referred to as McNemar's test.)

@ Runthe test.

b, Explain how this tests the null hypothesis that you wanted to test.
From the SPSS printout in Exhibit 6.3

@ Verify the answer to Exercise 6.17a.

b.  Interpret the row and column percentages.

c.  What are the values labeled “Asymp. Sig."?

d.  Interpret the coefficients,

RACE*GOAL Crosstabulation
Goal
Gain Lose (Maintain| Total

RACE  African-Amer Count 24 47 28 99
Expected Count 8.6 62.3 28.1 99.0
% within RACE 24.2% 47.5% 283% | 100.0%
P within GOAL 43.6% 11.8% 15.6% 15.6%

% of Total 3.8% T.4% 4.4% 15.6%
White Count 31 352 152 535
Expected Count 40.4 336.7 1519 535.0

% within RACE 5.8% 65.8% 284% | 100.0%
% within GOAL | 56.4% 88.2% R4.4% B44%
% of Total 4.9% 55.5% 24.0% 84.4%

Total Count 85 399 180 634
Expected Count 550 395.0 180.0 634.0
% within RACE 8.7% 62.9% 284% | 100.0%
% within GOAL | 100.0% | 100.0% | 100.0% | 100.0%
% of Total 8.7% 62.9% 28.4% | 100.0%

Exhibit 6.3 Continued
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6.24

6.25

6.26
6.27

Chi-Square Tests

Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 37.229* 2 000
Likelihood Ratio 29.104 2 000
N of Valid Cases 634

4 () cells (.0%) have expected count less than 5. The minimum expected count is 8.59.

Symmetric Measures
Approx.
Value Sig.
Nominal by Phi 242 000
Nominal Cramer’s V 242 000
Contingency Coefficient 236 000
N of Valid Cases 634

Exhibit 6.3 Continued

A more complete set of data on heart attacks and aspirin, from which Table 6.4 was taken,
follows. Here we distinguish not just b Heart Attacks and No Heart Attacks, but also
between Fatal and NonFatal attacks.

Myaocardial Infarction

Fatal Attack NonFatal Attack No Attack Total
Placebo 18 171 10,845 11,034
Aspirin 5 99 10,933 11,037
Total 23 270 21,778 22,0M

a.  Calculate both Pearson's chi-square and the likelihood ratio chi-square table. Interpret
the results.

b, Using only the data for the first two columns (those subjects with heart attacks),
calculate both Pearson's chi-square and the likelihood ratio chi-square and interpret
your results,

¢, Combine the Fatal and NonFatal heart attack columns and compare the combined
column against the No Attack column, using both Pearson’s and likelihood ratio chi-
squares. [nterpret these results,

d.  Sum the Pearson chi-squares in (b) and (c) and then the likelihood ratio chi-squares in
(b) and (c), and compare each of these results with the results in (a). What do they tell
you about the partitioning of chi-square?

e, What do these results tell you about the relationship between aspirin and heart attacks?

For the results in Exercise 6.24, calculate and interpret

a. Cramér's V

b.  Useful odds ratios

Compute the odds ratio for the data in Exercise 6.10. What do these values mean?

Compute the odds ratios for the data in Exercise 6.13. What do these ratios add to your

ding of the ph being studied?
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Compute the odds in favor of seeking assistance for each of the groups in Exercise 6.15.
Interpret the results.

Dabbs and Morris (1990) examined archival data from military records to study the relationship
between high testosterone levels and antisocial behavior in males. Of 4016 men in the Normal
Testosterone group, 10.0% had a record of adult delinquency. Of 446 men in the High Testos-
terone group, 22.6% had a record of adult delinquency. Is this relationship significant?

What is the odds ratio in Exercise 6,297 How would you interpret it?

In the study described in Exercise 6.29, 11.5% of the Normal Testosterone group and 17.9%
of the High Testosterone group had a history of childhood delinguency.

a. s there a significant relationship between these two variables?

b.  [Interpret this relationship.

¢.  How does this result expand on what we already know from Exercise 6,297

In a study examining the effects of individualized care of youths with severe emotional
problems, Burchard and Schaefer (1990, persanal communication) proposed to have caregivers
rate the presence or absence of specific behaviors for each of 40 adolescents on a given day. To
check for rater reliability, the researchers asked two raters to rate each adolescent. The follow-
ing hypothetical data represent reasonable results for the behavior of “extreme verbal abuse.”

Rater A

Rater B Presence Absence
Presence 12 2 14
Absence 1 25 26

13 27 40
a.  What is the percentage of agreement for these raters?
b, What is Cohen's kappa? ;
¢.  Why is kappa noticeably less than the percentage of agreement?
d.  Modify the raw data, keeping N at 40, so that the two statistics move even farther apart.

How did you do this?
Many school children receive instruction on child abuse around the “good touch-bad touch”
maodel, with the hope that such a program will reduce sexual abuse. Gibson and Leitenberg
(2000) collected data from 818 college students, and recorded whether they had ever
received such training and whether they had sub ly been abused. Of the 500 students
who had received training, 43 reported that they had subsequently been abused. Of the 318
who had not received training, 50 reported subsequent abuse.
a. Do these data present a convincing case for the efficacy of the sexual abuse prevention
program?
b, What is the odds ratio for these data, and what does it tell you?

Computer Exercises

6.34

In a data set named Mireault.dat and described in Appendix: Computer Data Sets, Mireault
(1990) collected data from college students on the effects of the death of a parent. Leaving
the critical variables aside for @ moment, let's look at the distribution of students. The data
set contains information on the gender of the students and the college (within the university)
in which they were enrolled.

a.  Use any statistical package to tabulate Gender against College.

b.  What is the chi-square test on the hypothesis that College enrollment is independent of
Gender?

c.  Interpret the results,
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6.35

6.36

6.37

When we look at the variables in Mireanlt's data, we will want to be sure that there are no
systematic differences of which we are ignorant. For example, if we found that the gender of
the parent who died was an important variable in explaining some outcome variable, we
would not like to later discover that the gender of the parent who died was in some way
related to the gender of the subject, and that the effects of the two variables were confounded.
a  Run achi-square test on these two variables.
b, Interpret the results.
¢, What would it mean to our interpretation of the refationship between gender of the par-
ent and some other variable (e.g., subject’s level of depression) if the gender of the
parent is itself related to the gender of the subject?
Zuckerman, Hodgins, Zuckerman, and Rosenthal (1993) surveyed more than 500 people and
asked a number of questions on statistical issues. In one question a reviewer warned a
researcher that she had a high probability of a Type | error because she had a small sample
size. The researcher disagreed. Subjects were asked, “Was the researcher correct?” The pro-
portions of respondents, partitioned among students, assistant professors, associate profes-
sors, and full professors, who sided with the researcher and the total number of respondents
in each category were as follows:

Assistant Associate Full

Students Professors  Professors Professors
Proportion .59 34 43 51
Sample size 17 175 134 182

(Note: These data mean that 59% of the 17 students who responded sided with the researcher.
When you calculate the actual obtained frequencies, round to the nearest whole person.)

a. Would you agree with the reviewer or with the researcher? Why?

b, What is the error in lagic of the person you disagreed with in (a)?

¢, How would you set up this problem to be suitable for a chi-square test?

d.  What do these data tell you about differences among groups of respondents?

The Zuckerman et al. paper referred to in the previous question hypothesized that faculty
were less accurate than students because they have a tendency to give negative responses (o
such questions. (“There must be 2 trick.”) How would you design a study lo test such a
hypothesis?

Discussion Questions
638 Hout, Duncan, and Sobel (1987) reported data on the relative sexual satisfaction of married

couples. They asked each member of 91 married couples to rate the degree to which they
agreed with “Sex is fun for me and my partner” on a four-point scale ranging from “never or
occasionally” 1o “almost always.” The data appear here:

Wife's Rating

Husband's Fairly Very Almost

Rating Never Often Often Always TOTAL
Never 7 7 2 3 19
Fairly Often 2 8 3 7 20
Very Often 1 5 4 9 19
Almost Always 2 8 9 14 33
TOTAL 12 28 18 33 91

6.40
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a Hnw_wuuld you go about analyzing these data? Remember that you want to know more
than just whether or not the two ratings are independent. Presumably you would like to
show that as one spouse’s ratings go up, 5o do the other's, and vice versa.

b.  Use both Pearson's chi-square and the likelihood ratio chi-square.
¢ What does Cramér's V offer?

d.  What about odds ratios?

e.  What about kappa?

f.

Finally, what if you combined the Never and Fairly Often categories and the Very Often
and Almost Always categories? Would the results be clearer, and under what conditions
might this make sense?

In the previous question, we were concerned with whether husbands and wives rate their
degree of sexual fun congruently (i.e., to the same degree). But suppose that women have dif-
ferent cut points on an underlying scale of “fun.” For example, maybe women's idea of Fairly
Often or Almost Always is higher than men's. (Maybe men would rate “a couple of times a
month” as “Very Often” whereas women would rate “a couple of times a month™ as “Fairly
Often.”) How would this affect your conclusions? Would it represent an underlying incon-
gruency between males and females?

Lfse SPSS or another statistical package to calculate Fisher’s Exact Test for the data in Exer-
cise 6.13. How does it compare to the probability associated with Pearson's chi-square?
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