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and the sample variance, V(&) = s?, appear as reasonable estimates of the
population mean and variance respectively. The random variables X and
s? may be used as estimators of the population mean u and population
variance ¢ respectively.

In the general sampling situation, suppose you are sampling from a
population induced by a random variable whose distribution is completely
unknown, or concerning which you have only partial information, not suffi-
cient to specify it completely. Let 8 represent an unknown parameter of
the distribution. This might be the population mean, the population
standard deviation, or some other number which, if known, would either
specify the distribution completely, or provide further information about
it. An estimate, §, of 6, is a function of the sample values, or of the sample
poult (xl, o ’ x"’)’ é = é(xb T2y =y xn)y
which you are willing to use in guessing the unknown value of 8. The cor-
responding esttmator of 6 is the same function, evaluated at the sample
random variables: 8 = B(xy, X3, -+, X).

The estimator is itself a random variable.

47. Unbiased Estimators. »
»  Definition. The estimator 8 is unbiased if E(é) =19,

For example, the sample mean is an unbiased estimator of the population
mean, since E(X) = p (page 121). The sample variance is not an unbiased
estimator of the population variance.

We have

s +{ (22,0 -]

n

(Corollary G, page 86)

1 <
-2 Bx® — E@®).
n )
Now for any random variable y, we have
E(y*) = V(y) + [EW]
In particular, for each 7,
E@x?) = V(x) + [Ex)P = V(@) + [E@®] = ® + 4%,

since each sample random variable has the same distribution as the random
variable x which induced the population. Also :

(page 88)

2
EE®) =V@E) + [E®) = o + ui (page 122)
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so that E(s®) # ¢%, and the sample variance is not an unbiased estimator

of the population variance o2, On the other ‘hand, T
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8o that the statistic -
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is an unbiased estimator of the population variance,

It would be natural to expect some divergence 6f~8pinion as to the impor-
tance of such a concept as “unbiasedness.” We list here some of the de-
sirable properties an estimator possesses by virtue of being unbiased.

1.. T(@,}gﬂ}gt an estimator is unbiased is to state that there is a meas-
ure of central tendency, the mean, of the distribution of the estimator,
which is equal to the population parameter. This is simply the definition’
of unbiasedness. An equally appealing property, however, from this point
of view, might, for example, be that the median of the estimator be equal to
the population parameter.

2. For many unbiased estimators one can conclude, by applying the law

of_l_ag_‘gi _ﬂg{gbggg,,_htkglwl}grlgt_l}gh_s.ample size is large the estimator is likely
_to be near the population parameter. However, this is the’ property of
consistency, discussed below; and ‘the  argument here is not primarily in
favor of unbiasedness, but in favor of consistency. For example, the un-

biased estimator, I s?, of the population variance has this property;

but so also does the sample variance s? itself.

3. An important advantage from the point of view of the development
of the theory of statistical inference is that in many respects unbiased esti-
mators are simpler to deal with, One can, for example, at least when
sampling from populations of a certain wide class, exhibit a lower bound
on the variance of unbiased estimators, and show that This minitium is

actually attained by maximum likelihood estimators (to be defined below).

'In effect, the class of possible estimators of a given parameter is so large it
is impossible to say much about it. A restricting principle is required be-
fore one can penetrate deeply in a study of the behavior of estimators,
To insist on unbiasedness is one way of restricting the class of estimators
80 as to render it more manageable.
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by Theorem K and Corollary N, pages 88, 89. Again, since each x; has
the same distribution as x, we have V(x;) = V(x) for each 7, so that

1 n 1 1
VE = 3 Zi=1 V() = E-nV(x) == V(x).

We shall often use the symbol ¢ or ¢, for the standard deviation of x, so
that V(x) = ¢2 or o,%; then

> V(®) - or oz o

We recall that the variance of a random variable in some sense measures
the compactness or the dispersion of the probability distribution of the
random variable about its mean or expectation: a large variance means at
least moderate probabilities associated with values distant from the mean,
while a small variance means a high probability that the random variable
will assume a value near its mean. We observe that for large n the variance
of % is very small, and accordingly suspect that if n is large the probability
that x will assume a value near its mean will be high. Essentially, this is
the content of the law of large numbers, though we shall state it first in
more general form. A theorem which gives us Chebyshev’s Inequality will
be used in the proof; this inequality is also useful for other purposes.

44, Chebyshev’s Inequality. -Chebyshev’s Inequality applies to any
random variable at all, provided it has an expectation and a variance.

»  Theorem A. Lety be a random variable with expectation E(y) = u

and variance V(y) = ¢®. Then if ¢ i¢s any positive number,

Prily — ul = ¢} <%/

Pr{ly — u| > ¢} may be read: ‘“the probability that y will differ from u
by at least e.’

?

Proof for a continuous random variable y: By the definition of variance,
page 51, we have

#=Ww=f(WWW@@,

where p = E(y) and where g(y) is the probability density function of y.
Further,

o = f (v — w)%(y)dy

= f (v — W@ dy + f (y — wg(y) dy,
ly—ul>e ly—nl<e
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where »[ . denotes the integral over the range of values of y for which
e

[y — u|>¢ and denotes the integral over the remainder of the

ly—ul<e

range of y. (The last equation could also have been written

f (v — wig(y)dy

M

0 n—e nte
= +é(y — W) dy + f_ w (y — w)%(y)dy + j; ~ (v — w)2g(y)dy.)

Since the integrand is non-negative, the last integral isnon-negative, and we
‘have

o > _/';_MZG Y — w9 (y) dy.

In the integral in the right member, the integrand is always at least as
large as e2g(y) over the indicated range of integration, so that

> & f g(y) dy.
ly—ul>e -

But the integral of the probability density function of a random variable
over a range of values is just the probability that the random variable will
assume a value in that range (page 40). Therefore

o owar=Prily = w2 q,

and the last inequality gives us

o® > EPr{ly — u| > ¢},
or
Prily —u| > ¢ < o%/é.

Exampie 1. In the example on page 97 you have a large lot of items and
wish, by random sampling, to estimate the fraction which are defective.
We can use Chebyshev’s inequality to find a number N with the property
that if you take a sample of size N or larger, the probability will be at
least, say, 0.95 that the average number of defectives in your sample will
differ from the true proportion in the lot by less than, say, 0.1. If we set
up the population as we did earlier (pp. 97 ff.), the random variable x
“number of defectives at an elementary event,” induces on R a probabilitb;
space in which the elementary event 1 has probability p, the probability of a
defective, and the elementary event 0 has probability ¢ = 1 — p. If x; is
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»  Theorem K. If ais a real number and x a random variable with
variance V (%), then V(ax) = a2V (x).

We leave the proof as an exercise.

We have in the following theorem an alternative formula for the variance
which is often more convenient than that given in the definition.

»  Theorem L.
V(x) = Ex’) — [E®]"
Proof. We have ’
V() = Elx — B@P = Ex* — 2xE®) + [E®))
- E(x? — E[2xE®x)] + E(E®)) by Corollary G
= E(x®) — 2BE(®)E(x) + [E®)]® by Theorems C and D
(note that E(x) is a constant);
V(x) = E(x? — [E®].
The formula of Theorem L is often useful in furnishing an expression for
E@x%:
> B@®) = V@ + [E®P

»  Theorem M. If x;y are independent random vartables with var-
tances V(x) and V(y), then

VE+y) =V® + V).
Proof. Vi +y) =Elx+y — Ex+ N2 by definition;
= E(x - E®] +[y — E®?
= E(x — E®]* + 2x — E@]y — E¥)]
+ Iy — E®P
= Elx — E®P + 2E(x — E®]y — EW)

+ Ely — EG)P

by Corollary G. _ _
Now x — E(x) is a function of the random variable x, namely, X minus a

constant, and similarly y — E(y) is a function of the random variaple y.
By the remark on page 80, x — E(x) and y — E(y) are independent, since x
and y are independent. By Theorem H, then,

E(x — E@]y — E®)) = Elx — E®)]ElY — E¥)]
| = [E(x) — E®)][E(y) — E(y)] by Corollary F,
= 0.
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Therefore V(x +y) = Elx — E@)]? + Ely - EQ)?
= V() + V(y), by definition.

Application of the principle of mathematical induction to Theorem M
yields the following corollary:

».  Corollary N. The variance of the sum of a finite number of inde-
pendent random variables is the sum of their variances.

PROBLEMS

1. Let x be a discrete random variable assuming the value 1 with proba-
bility p and the value 0 with probability ¢ = 1 — p. Find E(x), V(x).

2. A cube has one spot on each of four sides, two spots on each of the
other two sides. Find the mean (expectation) and variance of (a) the
number of spots that will show on top when it is tossed to the ground;
(b) the total number of spots showing when 6 such cubes are tossed.

3. If x is the random variable described in Problem 1, what are the values
assumed, and with what probabilities, by the random variables 2x, 2x — 1,
x?? Find the expectation and variance of each.

4. Let x,y,z be independent random variables with E(x) = E(y) = 2,
E@z=-3 V=1, V(i =V =2 Find (@) Ex-t+y-+2z);
(b) E[x(y + 2)]; (¢) V(3y + z). (d) Which, if any, of your answers depend
essentially on the independence of the random variables?

6. If n is a positive integer, and if each of the n random variables x,,
Xg, * ++, X, has the same distribution (same probability function) as the

n 1
random variable x in Problem 1, find (a) E(Zi.=1 x;); (b) E(— Zi=1 xi>.
n
6. If the random variables x;, X3, - - -, X, in Problem 5 are independent,

n 1 n
fnd @) V(0 x5 ) V(> Z0, %)

7. If (x1,Xs, - * -, Xn) isany combined random variable, express E (Z:=1 X;)

1 n .
and E<— Zi=1 x,-) in terms of E(x1), E(Xg), - -+, E(x,) (assuming they
n

exist). .
8. Express V(ZLI x;) and V(— 2;1 xi> in terms of V(x1), V(xg), -,
n
V(xn) (assuming they exist) if x1, Xg, - - -, X, are independent.

9. What are the expectation and variance of the sum of the numbers ap-
pearing on two dice? on n dice?

10. Prove Theorem C.
11. Prove Theorem D for a continuous random variable x.
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» Theorem C. If ais a constant, then

E(a) = a.
You may supply the proof.

»  Theorem D. If ais a real number (constant) and x is a random
variable with expectation E(X), then E(ax) = aE(X).

Proof for discrete x. On setting ¢(z) = ax in Theorem A, we find that
E(ax) = Z,,- azx f(z) = a Zx z f(x) = aE(x).
You may supply the proof for a continuous random variable x.

»  Theorem E. If x and y are random variables with expectations
E(x) and E(y), then E(x +y) = E(x) + E(y).

Proof for a continuous combined random variable (x,y). By Theorem B, with
e(z,y) = z + y, we have

E+7y) = f f (@ + 9) f(zy) d dy

= f:o f:x f(z,y) dz dy + f_ : f:oyf(x,y) dz dy

= f:;z dz j:f(x,y) dy + j;:y dy L:f(x;y) dz

- f_ Zx (@) dz + f_:yy(y) dy

= E(x) + E(y),

since
0

/() f f@y)dy and g(y) = f f(z,y) d.

We leave the proof for discrete random variables to you.

»  Corollary F. If ais a real number (constant) and if X vs a random
variable with expectation E(X), then
E(x 4+ a) = E(x) + a.
This theorem is easily proved directly, using Theorem A; but it is also a

corollary of Theorems E and C, obtained on replacing y by a random varia-
ble assuming the constant value a with probability 1.

»  Corollary G. The expectation of a finite sum of random variables
is the sum of their expectations.

This follows from Theorem E with the aid of mathematical induction.
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» Theorem H. If x,y are independent random variables with
expectations E(x) and E(y), then
E(xy) = E®)E(y).

Proof for continuous random variables. By Theorem B, with ¢(z,y) = =y,
we have

By - [ i | nyf(x,y) dz dy.

Since x and y are independent, f(z,y) = f(z)g(y), so that

E(xy) = f f 2y f(2)g(y) do dy

- f 2 f(z) dz f y9@) dy = E@EG).

—00

»  Corollary I. The expectation of the product of a finite number of
independent random variables is the product of their expectations.

Again, mathematical induction yields this corollary to Theorem H.
We now recall the definition of variance. If x is a discrete random varia-
ble with probability function f(z) = Pr{x = z}, then
V) =2 [z — E@P f(x).
If x is a continuous random variable with probability density function
f(z), then N
Ve = [ e — BPa) do

In either case, we see from Theorem A that

> V(x) = E[x — Ex)]%

»  Theorem J. If ats a real number, and x a random variable with
variance V(x), then V(a) = 0 and V(x 4+ a) = V(x).

Proof. By Theorem C, E(a) = a, so that

V(a) = Ela — E(a)]?> = E(a — a)? = 0,
Also
Vx+a) = Ex+a— Ex+ a)]?

=Ex+a— Ex) —a)? by Corollary F,
=Ex — E®]? = V() by definition.
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