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NOTES AND LINKS FROM THE WEB PAGE:

Correlation

r = covxy / (sx*sy), where covxy = SPxy / (N-1), and SPxy = Σ(X-Mx)(Y-My)

Analytic Contrasts summary

http://web9.uits.uconn.edu/lundquis/ANALYTIC%20CONTRASTSf16.doc
Keppel's ANOVA notation system

http://web9.uits.uconn.edu/lundquis/NOTATION.pdf
http://web9.uits.uconn.edu/lundquis/NOTATION.doc
Only Step 1 of this procedure will be on the exam. I will assume you can calculate the df for any effect in any design. We didn't use the bracket notation for SS at all, though it is a useful system should you ever want to calculate Sums of Squares by hand.

Two Factor Design: Interactions and Main Effects
http://web9.uits.uconn.edu/lundquis/2way.doc
Recognizing Higher Order Interactions From Graphs And Means Tables

http://web9.uits.uconn.edu/lundquis/stat242/3way.doc
What I want you to understand about Interactions Graphs is how to recognize any effects in a two-way factorial design, and to at least recognize when interactions are present in a three-way factorial design. The details of finding whether there are main effects and two-way interactions in three-way graphs are of limited importance for us at this point (SPSS can give you the relevant means, collapsed and otherwise), though it's a conceptually useful skill and this summary could be helpful in the future.

REPEATED MEASURES ANOVA notes:
http://web9.uits.uconn.edu/lundquis/REPEATED%20MEASURES%20ANOVA%20notes.doc
This provides an overview of the logic of the Repeated Measures (or Within Subjects) analysis though we use a different notation ("a" instead of "k", "A, S, and AS" instead of "Between Groups, Between Subjects, and Error"). It's good to understand if it's helpful but it will not explicitly appear on the exam since the class discussion is somewhat different.

Expected Mean Squares (PDF):

http://web9.uits.uconn.edu/lundquis/EMS.pdf
http://web9.uits.uconn.edu/lundquis/EMS.doc
What I want you to understand from the Expected Mean Squares handout is how to use EMS to identify an error term for an F ratio, and not so much (at least for the exam questions) how to arrive at the EMS for a given term in a design, even though the latter is what most of the handout is about (and it's pretty easy, really). You do not have to know anything about "pooling error terms". In the section called "Using EMS" you should note the section beginning with "You also find out that some effects don't even have error terms," both because I think it makes the purpose of EMS clear, and because it answers the question of why there is no significance test for the Subjects factor.
EMS are treated somewhat differently in K&W; for instance, without different symbols (sigma vs. theta) for fixed vs. random effects, and with more detail about how the EMS might be calculated. That's fun stuff but go by my system instead (which is actually Keppel's from an earlier edition).
Finding Sources of Variance

http://web9.uits.uconn.edu/lundquis/SV.pdf
http://web9.uits.uconn.edu/lundquis/SV.doc
What I want you to understand from the Finding Sources Of Variance handout is what the SV are for any between subjects design up to 3 factors, and any within subjects design up to 2 factors, which technically could also be called three factors if you consider S to be a factor. For a mixed design you should know the SV and error terms for a one-between-one-within design "Ax(BxS)" since that's the main version we consider in class. I hope you grasp the procedure well enough to use it on ANY design, but those are as much as I'd require on the exam in any detail so just be able to apply the rules to them. In all cases know or be able to tell what the error terms are for the different effects and interactions.

Completely Randomized Designs and Repeated Measures Designs:

For clarification, a completely between-subjects design is sometimes referred to as a "Completely Randomized" design when observations in each cell are all from different participants, randomly sampled from the population and randomly assigned to conditions. Of course, some designs are between-subjects, but do not use random assignment, e.g., in the case of quasi-experiments where gender is a factor. So "Between-Subjects" design is probably the preferable general term. At any rate, the opposite of "Between Subjects" (or of "Completely Randomized") is "Within Subjects" or "Repeated Measures" design. In BOTH Between and Within designs, we are usually dealing with FIXED effects -- not RANDOM effects. So don't misinterpret the phrase "Completely Randomized" as having any implications about whether you're using fixed or random EFFECTS.
terms to keep straight:

-
between-subjects factor (and completely randomized design) vs. within-subjects factor (and repeated measures design); note "completely randomized" has nothing to do with "random effect"

-
fixed vs. random effects (see EMS handout and KW 530-534); "Subjects" is the only random factor we've considered, though there was also the lecture example of how "teacher" could be a random factor allowing you to generalize to all teachers, or "location" could be a random factor allowing you to generalize to all other restaurant franchise locations

-
crossed vs. nested factors: in this course, "Subjects" has been the only nested factor, occurring when the design involves at least one between groups factor (though there was also the example of how "teacher" could be nested within "number of hours of homework assigned" or "location" could be nested within "restaurants"); nesting is represented by a slash followed by the factor(s) that "Subjects" are nested in; two factors "cross" when every level of one factor occurs in combination with every level of the other factor; when "Subjects" crosses a factor, that factor is a repeated measure or within-subjects factor. E.g., if "Subjects" crosses a factor A, A is a within subjects factor; if "Subjects" are nested within a factor (written as "S/A"), A is a between subjects factor.
-
global vs. local error terms: post hoc testing (means comparisons, simple effects, interaction contrasts) of a between-subjects factor uses a global error term, i.e., the error term from the omnibus analysis, to provide the best estimate of the population variability; post hoc testing of a within-subjects factor uses a local error term, i.e., one based only on the cells being compared, to minimize possible violations of the sphericity assumption. In mixed designs an interaction analysis may involve both a between-subjects factor A and a within-subjects factor B, in which case the error term should be a "hybrid": part global and part local.
ANALYSES OTHER THAN THE OMNIBUS:

planned comparisons: psi-hat, coefficients, SS, df=1, MS, F

-
orthogonality: how to show it numerically; use in simple and complex comparisons; not required but elegant; number of orthogonal contrasts possible in a set = df for the treatment effect = a-1; different sets of orthogonal contrasts are possible but all will have a-1 contrasts in them
-
trend analysis: for categorical IVs that are quantitative in nature and can be ranked from least to most (e.g., drug dosage); coefficients from K&W table A.3 can be used if spacing between the categories is even (e.g., 20mg, 30 mg, 40 mg but not 20mg, 30 mg, 50 mg); identify number of trend components possible, e.g., 4 means -> up to cubic term allowed (3rd degree polynomial) -> up to two direction changes (e.g., up, down, up); proportion of A accounted for by each; SSfit, SSfailure (test leftover variance to see if there's significant enough unexplained variability that an additional trend component would be worth trying)
post hoc tests controlling Type I error:
-
familywise alpha could be set higher than .05, maybe .10 instead; then per comparison error rate should be reduced so as not to exceed the chosen limit
-
by lowering alpha: Bonferroni (divide familywise alpha by number of comparisons), Sidak (table A.4) 

-
just do t-tests if F significant: Fisher "protected t-test" or "Least Significant Difference " is not in K&W because considered too liberal, though still seen in journals

-
by calculating D, the minimum difference there has to be between group means to call them significantly different: Dunnett (control vs each condition, see table A.5), Tukey (all pairs of means, see table A.6, uses q based on alpha, df error, and number of means "a"), Fisher-Hayter (all pairs of means - if F significant, then like Tukey but with q for "a-1" instead of just "a"); formulas for D require a value for n, the number of subjects in a group, so for unequal sample sizes calculate the harmonic mean sample size (take the reciprocals of all the sample sizes, find their mean, then take the reciprocal of that) and use that as n
-
by using a larger critical F: Scheffe - omnibus critical F multiplied by omnibus numerator df; allows all comparisons, both simple and complex
-
simple effects / interaction contrasts; analyze subsets of data to get numerator for effect MS, but calculate F manually using omnibus error term MS (and its df) in denominator

-
a within subjects factor uses the error term only based on the cells in the immediate analysis, not the omnibus: simple effects and interaction contrasts are done as if the other levels didn't exist, and post hoc comparisons between means amount to simply doing t-tests comparing those cells (Tukey etc. don't apply so use Bonferroni or Sidak correction to alpha based on number of effects being tested)
TWO AND THREE FACTOR BETWEEN SUBJECTS DESIGNS

two way factorial: tree, SV, df, graphs

three way factorial: tree, SV, df, graphs (but not in as much detail as the 3way graphs handout offers)

advantages: economy ( 2 or more factors at once, yielding more info with fewer subj, less time and effort), control (using blocking for error variance reduction), generality (examine A's effect under different B conditions or for different groups of subjects)

orthogonality implicit in factorial ANOVA's factors; affected by unequal n in factorial design because then knowing membership in A group would implicitly give information about membership in B group (and thus about likely means)
pie chart as representation of SS partition where one-factor design's "S/A" is divided into B, AB, and S/AB; as opposed to when the pie wedge for A was divided into sub-wedges to represent orthogonal contrasts or trends

A and B cross (A, B, AB), subjects nested in AB cells; error term S/AB is informally the "thing that happens only once" or "smallest question that can be asked" (S/AB is single data point, like S/A in one factor design)

-
example of blocking: A(homework hours 1 2 3 4) x B(IQ lo med hi)

-
example of nesting: A(homework hours 1 2 3 4) x B(teacher 1,2,3; 4,5,6; 7,8,9; 10,11,12) where teacher is nested in homework hours (teacher 1 doesn't give 1 hour AND 2 hours AND 3 hours AND 4 hours); in current practice that situation is more likely to be analyzed using Hierarchical Linear Modeling
definition of interaction (effect of A depends on level of B; OR simple effects of A are different at b1 and b2 etc; OR there is a difference between the differences between the means), main effects, simple effects

-
for "differences between differences" to be comparable, scores must be on true interval measurement scale so that those numerical differences really represent the same size conceptual difference at any point along the scale (see K&W p. 207 example of younger and older subjects improving performance on a test after more study time)

-
interpretation of interaction should come before interpetation of main effects; ordinal or "removable" interactions (e.g., lines aren't parallel but all a1 cell means are higher than all a2 means) vs. disordinal or "nonremovable" interactions (lines aren't parallel and mean of a1 might be higher or lower than a2 depending on level of B); if interaction is ordinal for A it still might not be for B so check both
-
explaining or "unpacking" interaction: simple effects, interaction contrasts; whenever you talk about simple effects of a factor, follow it with "at ..." (e.g., simple effect of A at b2, or simple effect of B at a1, etc.)
-
three way between-subjects factorial design: for all main effects, two-way, and three-way interactions, error term is MS for S/ABC, and post hoc tests (simple, interaction contrasts, Tukey etc.) use omnibus S/ABC for error term MS; 3-way interaction is present if 2-way interactions are different from one C graph to the other

blocking (K&W 228-231), post hoc blocking (K&W 231-232), ANCOVA as the extension of post hoc blocking into regression (K&W 311-312) 

-
a blocking factor is intended to take away some of the error term so the F is larger, but should not interact with the main factor because that would indicate it qualifies those main effects and is therefore of actual theoretical interest (as opposed to being just a methodological convenience like a control variable)

-
adding a blocking factor includes a cost in the sense of losing df from the error term, since more df would make significance easier to reach; this cost is typically more than balanced by the corresponding reduction in size of the error term MS itself when the blocking factor is included, e.g., knowing whether IQ is high, medium, or low reduces a lot of the unaccounted-for variability while only reducing the error df by the (3 - 1 = ) 2 df the IQ factor takes up.

-
ANCOVA is furthest extension of post hoc blocking where groups become single values of the IV which is then treated as continuous (e.g., actual IQ scores instead of artificial "high, medium, low" categories); more easily addressed using multiple regression with a categorical theoretical IV and continuous control IV that don't interact
omega squared vs partial omega squared; when to use each: partial preferred when effect is one among other theoretical factors in the design which could not be expected to "explain" each other's variance, complete is preferred when other factors are only methodological factors that form part of the inherent natural backdrop to the effect being examined

-
partial effect sizes: negative values can occur due to F-1 term (getting rid of the non-effect part) - this means effect may be swamped by error, so should be reported as 0, not a negative number
-
omega squared is preferred to eta-squared (or R-squared) because it doesn't count random variation in the scores (measurement error, individual differences) as part of the factor's treatment effect, whereas eta-squared naively accepts all of the variation as actually being due to the factor it's associated with
REPEATED MEASURES AND MIXED DESIGNS

repeated measures designs: tree, SV, df, error terms (one-, two-, and three-way factorial)
mixed designs: tree, SV, df, error terms for "one-between, one-within" Ax(BxS) design

advantages: smaller n (saves time and money, and subjects may be scarce depending on the study); better control since the same subjects are used in different conditions, eliminating individual differences from the unexplained variability; allows the study of change over time

disadvantages: practice effects lead to improvement on later trials, fatigue effects lead to worse performance on later trials, differential order effects where performance on condition a2 may be different depending on whether it follows condition a1 or a3; to combat these, counterbalance the orders of conditions, and these different orders may or may not be analyzed as a factor in the design
a factor is a repeated factor if Subjects cross it and a between factor if Subjects are nested in it ("S/A")

-
in this course all IVs are crossed, never nested; only "Subjects" can be either, so finding sources of variance involves identifying which factors Subjects cross and which factors they're nested in; if they cross some and are nested in others, it's a mixed design, with both between and within factors present
the one-factor Repeated Measures (RM) design has factor A, factor S, and interaction AS which provides the error term MS for the A effect (and there is NO error term for the S effect); as in other analyses the error term is the "thing that happens only once" or "smallest question that can be asked" (e.g. in a between subjects two-factor design S/AB is a single data point, "how this subject performed in this combination of conditions") - in the RM design the smallest piece of information is "how did this subject behave under this condition relative to this other subject, compared to under a diffrent condition", which amounts to asking about how subjects behave differently from each other depending on which condition you're looking at - that is, it's the AS interaction.

-
this interaction of the factor with subjects is always the error term for a within subjects factor

-
the F ratios in RM (and mixed) designs don't all have the same error term -- instead there are different error terms for different effects, and those error terms use the df that go with their MS's
In a mixed design where subjects are crossing B but are nested within A, the SV are: A, S/A, B, AB, SB/A

-
the error term for B is still its interaction with S - but since S appears as S/A in the sources of variance (being nested in A), that interaction with B is written as B*S/A (which I prefer to write as SB/A)

-
SB/A is also the error term for the AB interaction in a mixed design, which is less obvious

-
in mixed designs an interaction analysis may involve both a between-subjects factor A and a within-subjects factor B, in which case the error term should be a "hybrid": it would be a MS for SB/A (the interaction's error term), but that MS is calculated based on ALL the levels (global) of the between-subjects factor and only the levels OF INTEREST (local) of the within-subjects factor. That is, if A is a between factor with 4 levels and B is a within factor with three levels, say you're looking at the interaction contrast involving conditions a1 and a2 and b1 and b2; the error term would be S/AB calculated using only levels 1 and 2 of B (local), but using all four levels of A (global), so it would be based on 8 of the 12 cells in the design.
SPHERICITY ETC:
sphericity assumption: if you convert all the scores into difference scores (e.g. starting with three levels of A, make a new variable that is a1-a2, and another that is a1-a3, and another that is a2-a3), these difference score variables must all have the same variance. That is, homogeneity of variance applies to all difference scores. If A has 4 levels, there would be 6 difference score variables, and generally if A has "a" levels, there would be "a(a-1)/2" difference score variables. This is unwieldy to check so a substitute assumption is usually used which isn't strictly necessary but does include sphericity as a consequence: "homogeneity of covariance (or correlation)" is what I call it, but K&W differ in their usage of several interrelated terms.
Mauchly's test for sphericity - according to SPSS it "tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix"; violation of sphericity is detected by a significant Mauchly test

-
then either use a multivariate approach, or calculate "epsilon" as a factor to reduce the df and find a stricter critical F, using either the lower-bound, Greenhouse-Geisser, or Huynh-Feldt method (the latter is best, being most powerful)

-
the multivariate approach considers the repeated levels as different DVs; ex: between groups factor A = "condition" with levels condition 1 and condition 2, and repeated factor B = "time" with levels time 1, 2, and 3, yielding 6 mean DV scores -- but in the multivariate approach factor B could just become DV1, DV2, and DV 3 and we're just comparing the 2 conditions of A on three separate DVs simultaneously which represent performance at times 1, 2, and 3 respectively.
brief summary of how I use various terms related to the sphericity assumption: homogeneity of covariance ensures sphericity; along with homogeneity of variance, this implies homogeneity of correlation; when both homogeneity of variance and covariance hold, that's compound symmetry; in mixed designs the matrix of the within factor's variances and covariances that occurs under one level of the between factor must be the same for all other levels of the between factor, which is homogeneity of variance-covariance matrices

expanded comparison of my use of terms and K&W's use of terms: Here is what I have called each of these terms (following the conventional usage), as compared to how K&W use the terms (some of which I disagree with) on pp 375, 376, and 442-3. This may help you in trying to reconcile the text with your notes. Note that the text and I are in complete agreement about what the assumptions are; we're just calling the different steps by different names. My way is much more straightforward, so stick to your notes or my summary if you have any doubt.

-
sphericity: we agree on this term - the basic assumption is that if you convert all the scores into difference scores (e.g. starting with three levels of A, make a new variable that is a1-a2, and another that is a1-a3, and another that is a2-a3), these difference score variables must all have the same variance. That is, homogeneity of variance applies to all difference scores. If A has 4 levels, there would be 6 difference score variables, and generally if A has "a" levels, there would be "a(a-1)/2" difference score variables. This is unwieldy to check so a substitute assumption is usually used which isn't strictly necessary but does include sphericity as a consequence: "homogeneity of covariance (or correlation)"...
-
homogeneity of covariance: I say this means that in a matrix of variances and covariances, all the covariances are the same -- and if you had a mixed design this is something you could examine separately in each group; K&W use it to say those matrices are the same in every group in a mixed design, though for them that term does not imply the covariances within a matrix are all the same. This seems like a confusing usage of the term, e.g., saying the covariance between repeated b1 and b2 has to be the same in group a2 as it is in a1, without saying it has to be the same as the covariance between b1 and b3, and b2 and b3 (which is also true, and is what I use it for).

-
homogeneity of correlation: I say this is a consequence of having the covariances be equal AND the variances be equal -- all pairs of w/in subjects levels will have the same correlation with each other. K&W just use it in place of mentioning homogeneity of covariance here, since they use THAT term for something else (see above).

-
compound symmetry: I say it refers to the case where both homogeneity of variance AND homogeneity of covariance are true -- the variance-covariance matrix has all its variances (on the diagonal) equal to one another AND all its covariances equal to one another. K&W use it to indicate the same condition, but they describe it as being the case where homogeneity of variance and homogeneity of correlation both hold, since the latter is what they say instead of my "homogeneity of covariance".

-
homogeneity of variance-covariance matrices: I say this is the assumption for mixed designs -- that every group must have the same variance covariance matrix, and that within each of those matrices the variances are all equal and the covariances are all equal. K&W don't use this term at all; they use "homogeneity of covariance" to refer to the idea that the matrices are the same for each group without implying anything about what's IN those matrices, then add the sphericity assumption about those matrices which means the covariances should all be equal, and call the result "multisample sphericity". (It seems to me that that leaves out the homogeneity of variance part, but I guess they just assume we already know that has to be true.)
Global, Local, and Hybrid Error Terms

Post hoc comparisons, simple effects, and interaction contrasts for BETWEEN, WITHIN, and MIXED designs

* = cells being compared

E = cells used in Error term (denominator of F-ratio)

BETWEEN SUBJECTS factor

Comparing levels a1 and a2 of a Between Subjects factor with 3 levels: the F-ratio would have a numerator MS based on just a1 and a2 but a denominator MS (error term) based on all three levels of A (a1 and a2 and a3). The error term is "GLOBAL", using the omnibus test's error term based on all the data to give the best estimate of the population error variance.



a1
a2
a3




| *    E
| *    E
|       E
|


(This is a general principle, though in practice, none of the post hoc tests considered in class actually uses precisely this strategy. Fisher's protected t-test is equivalent to an F but implicitly uses only a local error term involving just the two means being compared. Other tests that calculate a "D" value do use the global "pooled" error term but don't directly use the F or t distribution, opting for the q distribution instead.)

WITHIN SUBJECTS factor

Comparing levels a1 and a2 of a Within Subjects factor with 3 levels: the F-ratio would have a numerator MS based on just a1 and a2 and a denominator MS (error term) also based on just a1 and a2. The error term is "LOCAL", using only the cells being compared, because although it would be nice to base it on all the data so as to get the best estimate of the population error variance, it's not worth the risk of violating the sphericity assumption that applies to repeated measures tests. To minimize violations of sphericity, only involve the cells being immediately compared.



a1
a2
a3




| *    E
| *    E
|
|

MIXED DESIGN: A is BETWEEN (3 levels), B is WITHIN (4 levels):

(Sources of Variance: A, S/A, B, AB, SB/A)

Simple effect of A at b1: the F-ratio would have a numerator MS based on just a1 and a2 and a3 at b1, and a denominator MS (error term) based on all the cells in the design. The error term is "GLOBAL" because A is a BETWEEN factor, as above. (Note that the error term that would be calculated from all the cells is the one normally used for A in this mixed design, which is the MS for S/A.)



b1
b2
b3
b4



a1
| *    E
|       E
|       E
|       E
|


a2
| *    E
|       E
|       E
|       E
|


a3
| *    E
|       E
|       E
|       E
|

Simple effect of B at a1: the F-ratio would have a numerator based on just b1 and b2 and b3 and b4 at a1, and a denominator (error term) also based on just those four cells. The error term is "LOCAL" because B is a WITHIN factor, as above. (Note that this reduced analysis effectively eliminates A as a factor since there's only one level, a1, being used; therefore the error term that would be calculated from these cells is just what it would be if this were a single factor repeated measures design with SV of B, S, and BS, i.e., the error term for B would be BS here, even though in the omnibus analysis it would have been SB/A.)



b1
b2
b3
b4



a1
| *    E
| *    E
| *    E
| *    E
|


a2
|
| 
|
|
|


a3
|
|
|
|
|


Interaction Contrast using a1 and a2 and b1 and b2: the F-ratio would have a numerator based on just a1b1, a1b2, a2b1, and a2b2, and a denominator (error term) that is a part-global, part-local "HYBRID". The error term is "global" with respect to A because A is a BETWEEN factor, so it uses all the levels a1, a2, and a3. But it is "local" with respect to B because B is a WITHIN factor, so it uses only the levels b1 and b2 that are involved in the interaction contrast.



b1
b2
b3
b4



a1
| *    E
| *    E
|
|
|


a2
| *    E
| *    E
|
|
|


a3
|       E
|       E
|
|
|


This is because using multiple levels of A poses no threat of a sphericity violation, since sphericity doesn't apply to Between Subjects factors and it's better to estimate error from as many cells as possible. But using multiple levels of B does pose a threat of a sphericity violation, so rather than use all of its levels, only the relevant ones are included.

In SPSS:

For a global error term MS, use the omnibus error term in the initial output; the new F-ratio must be calculated by hand with the numerator coming from the reduced (filtered) output, e.g., for a simple effect only including A data from b1 cells.

For a local error term MS, use the error term given in the reduced output, e.g., for a simple effect only including B data from a1 cells; that is, both the numerator AND denominator are correct in the reduced output, and nothing need be calculated by hand.

For a hybrid error term MS, neither the omnibus error term nor the reduced error term from just the cells being compared is correct. Do ANOTHER reduced analysis, this time including ALL the levels of the between factor (e.g., a1, a2, and a3 above), not just the ones involved (a1 and a2) -- but including for the within factor ONLY the levels that are involved (e.g., b1 and b2 above). Then ignore the numerator from this second reduced output, and use the new error term as the denominator in the F-ratio for the interaction contrast. This F-ratio must be calculated by hand, with numerator from the first reduced analysis and denominator from the second (and with df corresponding to each MS in its respective output).

Sphericity Assumption and related terms:

Sphericity: Make all difference scores among the levels of the repeated factor, i.e., with three levels, calculate each subject's score for a1-a2, a1-a3, and a2-a3. Sphericity means these new columns of difference scores must all have the same variance, just as the original columns a1, a2, and a3 had to according to the homogeneity of variance assumption. Note that if a repeated factor has only two levels -- as in a paired samples t-test analysis -- sphericity cannot be violated because there is only one difference score, whose variance can't be different from itself. (Or in terms of covariances and correlations as discussed below: with only two levels there is only one covariance or correlation, which can't be different from itself.)

Homogeneity of Covariance: If the covariances between the levels of the repeated factor (e.g., between the columns of scores for a1 and a2, a1 and a3, and a2 and a3) are all the same, sphericity is guaranteed to hold (though it is possible to have sphericity without meeting the stricter criterion of homogeneity of covariance). Since it's easier to test for homogeneity of covariance, this is usually used as a substitute for testing sphericity. Note that it doesn't matter whether these covariances are large, small, positive, negative, or zero, as long as they're all the same.

Homogeneity of Correlation: Covariance is the step before correlation; the covariance between variables 1 and 2, divided by the product of the standard deviations of variables 1 and 2, becomes the correlation (see the formula for the correlation coefficient r). Since it's already assumed that all three levels of A have the same variance (homogeneity of variance assumption), that means they also all have equal standard deviations, so converting their covariances into correlations means just dividing them all by the same pair of standard deviations. So if the covariances are all equal, the correlations are all equal too. Given this, sometimes homogeneity of covariance is described as "homogeneity of correlation" just because correlation is more familiar. Note again that it doesn't matter whether these correlations are large, small, positive, negative, or zero, as long as they're all the same.

Compound Symmetry: This just refers to both homogeneity of variance and homogeneity of covariance holding among the levels of the repeated factor. In a matrix of all the covariances among the levels, the off-diagonal entries are the covariances and the diagonal entries are the variances -- a variance, after all, is like a variable's "covariance with itself". (If it were a correlation matrix, the off-diagonals would be correlations among the levels and the diagonals would all be 1.0 -- a variable's correlation with itself.) The entries above the diagonal are identical to the entries below the diagonal since the covariance of a1 with a2 is the same as the covariance of a2 with a1, so the entries below the diagonal can be left out. So what compound symmetry says (summarizing the homogeneity of variance and covariance assumptions), is that in this variance-covariance matrix, there are only two numbers, because all the diagonals (variances) have to be the same number, and all the off-diagonals (covariances) have to be the same number. (Note that this is not a table of means from a factorial design: the three levels of A appear down the side AND across the top and there is no B.)



a1
a2
a3



a1
| (21
| cov12
| cov13
|
(21 = (22 = (23

a2
|
| (22
| cov23
|
cov12 = cov13 = cov23

a3
|
|
| (23
|

These assumptions, like all the others, apply to the population; in the sample you'll never get exactly the same values, which is why there are tests like Levene and Mauchly to indicate whether the sample variances and covariances are significantly different from each other or can be assumed to be equal in the population. For example, this population variance-covariance matrix meets both assumptions:



a1
a2
a3



a1
| 67
| 42
| 42
|
all (2 = 67

a2
|
| 67
| 42
|
all cov = 42

a3
|
|
| 67
|


In a factorial repeated measures design (not mixed!), the assumptions have to hold for all cells, so every combination of factors (here, two levels of A and two levels of B) is treated as another row and column in that matrix:



a1b1
a1b2
a2b1
a2b2



a1b1
| (2
| cov
| cov
| cov
|
all (2 are equal

a1b2
|
| (2
| cov
| cov
|
all cov are equal


a2b1
|
|
| (2
| cov
|


a2b2
|
|
| 
| (2
|

Homogeneity of Variance-Covariance Matrices: In a mixed design with A as a Between Subjects factor and B as a Within Subjects factor, the assumptions of homogeneity of variance and homogeneity of covariance have to hold for the levels of B within each A group, AND those values must be the same for all the A groups. That is, the variance-covariance matrix of B for group a1 is the same matrix as for group a2, hence "homogeneity of variance-covariance matrices". For example, these two matrices (of population variances and covariances) are identical and therefore meet the assumption:

a1

b1
b2
b3

a2

b1
b2
b3



b1
| 267
| 175
| 175
|

b1
| 267
| 175
| 175
|

b2
|
| 267
| 175
|

b2
|
| 267
| 175
|


b3
|
|
| 267
|

b3
|
|
| 267
|
Note that the assumption is only about covariances between levels of B (for any levels of A) but does NOT say anything about a covariance between levels of A, such as between a1b1 and a2b1. That's because a1 and a2 are different groups of subjects and it makes no sense to talk about a covariance (or correlation) between different subjects's values on any variable. For instance there could be a correlation between height and shoe size for boys, and also between height and shoe size for girls, but it would make no sense to ask if there's a correlation between boys' heights and girls' heights (or shoe sizes). Which boy's height would get paired with which girl's height? It would be completely arbitrary and therefore meaningless, and if such a correlation were calculated it would be expected to be zero since there should be no relation between unrelated numbers. (Of course, if you paired up the shortest boys with the shortest girls, and likewise for the tallest and all heights in between, then there WOULD be a positive correlation, but that would just be because you made it happen.)

On EMS (Expected Mean Squares): EMS breaks down the Mean Squares (the ANOVA's calculated variances) into the component population variances that must be giving rise to them, to say what would make those MS what they are in the long run (the "Expected" value of the MS). We did that when we introduced ANOVA, saying the numerator MS (between groups) is due to "measurement error + individual differences + treatment effect" and the denominator MS (within groups) is due to just the first two of those without the treatment effect, since subjects getting the same treatment don't differ due to different treatments. And the point was that if the treatment effect is zero as the null hypothesis assumes, the numerator and denominator would then be the same, and F would be about 1 (and we use the F distribution to see how much bigger than 1 our sample F might be before we decide that treatment effect probably isn't really zero). EMS is that exact same logic, only using Greek letters instead of words. You don't have to understand what the Greek letters represent, why some are written as sigma and some as theta, what the coefficients in front of them mean, or how you know which series of terms contributes to the EMS for a particular Source of Variance. EVEN THOUGH all those things are straightforward and clearly described in my EMS handout! No, all you have to understand is that EMS justifies the choice of error term in any F ratio, because the error term (denominator) for any effect must be a term with EMS that is identical to the EMS of the effect being tested (the numerator), EXCEPT that it's missing the term corresponding to that effect itself. Meaning that if that term, the treatment effect, is zero, then the whole F ratio would have the same numerator and denominator and be expected to equal 1 (roughly). Why do we have to "justify" our choice of error term? Well, when we went down the list of Sources Of Variance that we found, and all the effects ended up grouped together with their error terms in that list, didn't that seem kind of arbitrary? We weren't saying WHY those were the error terms, we just said "if you do it this way, you'll end up grouping them together right." With EMS there is an explanation for why a particular error term goes with a particular effect. For more info, see the EMS handout, especially parts of the section headed "Using EMS".
Collapsing 3-way graphs to identify 2-way interactions and main effects: The handout on THREE-WAY interactions (not the one on 2-ways) explains how to look for the main effects and 2-way interactions in the graphs or means tables. Basically, if you want to look for, say, a BC interaction, draw yourself a little 2x2 table of b1 and b2 and c1 and c2 and fill in the averages (or equivalently, sums) of all the numbers that occur under those conditions -- e.g., there would be a b1c1 value for each level of A, so add or average those numbers together and write that in the b1c1 cell, and so forth for the other three cells. Then treat it as a plain old two-way interaction (see that handout if necessary). For main effects do the same, but add or average all the values (four of them, if this is a 2x2x2) that occur for, say b1, and see if that number is different than the one you get when you do the same for all values occurring under b2. If those two numbers are different, that's your main effect of B. On the exam, you'll be asked to identify main effects AND interactions for two-way graphs, but ONLY 3-way interactions in three-way graphs (does the AB interaction change from one level of C to the other?) If I decide to ask anything about 2-way interactions in a set of 3-way graphs, it would only be for extra credit, along with the usual stuff about platypuses and the three Mrs. McGillicuddys.

The following was originally an addendum to the study guide summary for Fall 2016, elaborating on some of the topics that had been addressed. It might be helpful and you should read through it in case it clarifies things. There are some topics treated more explicitly here than in the earlier parts of this study guide.
REVIEW SESSION EXAMPLE OF ORTHOGONAL CONTRASTS
To go with the recording of the Fall 2016 review session, this is an example of orthogonal contrasts that came up while explaining how we know they're orthogonal, first for three groups and then for four. Those contrasts looked like this:

a1   a2   a3

+1   -1    0

+1   +1   -2

a1   a2   a3   a4

+1   -1    0    0

+1   +1   -1   -1

 0    0   +1   -1
SPHERICITY IN MIXED DESIGNS: HOMOGENEITY OF VARIANCE-COVARIANCE MATRICES

This topic also appears earlier in this study guide and in the text, where K&W call it "multisample sphericity" on p. 443.

We said one way of ensuring sphericity is if the population covariances between all pairs of levels of a repeated factor are all the same. So for your, say, 10 subjects, they give you observations under condition 1 and 2 and 3, and you want the covariance between their condition 1 and 2 scores to be the same as between their 1 and 3 scores and also their 2 and 3 scores. That's homogeneity of covariance. We also still want homogeneity of variance, meaning the variance of their condition 1 scores is the same as for 2 and 3. (Covariances don't have to be the same as variances, only the same as the other covariances.) If both are true, then all three identical covariances also become identical correlations if we divide them by the pair of identical standard deviations (see the formula for correlation) -- so we could refer to it as homogeneity of correlation instead of covariance. The combination of homogeneity of covariance and homogeneity of variance is called compound symmetry.

THE ADDITIONAL WRINKLE is this: In a mixed design, that matrix of population variances and covariances occurs for repeated-factor B for the group of, say, 10 subjects getting level ONE of between-factor-A, and in that matrix all the variances must be the same and all the covariances must be the same. That must also be true for repeated-factor B with the entirely different group of another 10 subjects who got level TWO of between-factor A. And not only must that second matrix also have equal covariances and equal variances, but the covariances must be the same as they were for the first group, and the same goes for the variances. In other words, the two matrices of variances and covariances must be identical in the population. So THAT'S what "homogeneity of variance-covariance matrices" refers to. This is described clearly in the Study Guide above, I think.
A POSSIBLY USEFUL ILLUSTRATION OF EPSILON AND DF IN HW 10

In HW 10 you had a concrete example of how epsilon is used, in case the example is handy. First: remember epsilon is the fraction by which you multiply both the numerator and denominator df for a repeated measures F ratio when sphericity is violated, and you then evaluate your F ratio against a critical value on those new adjusted df to see if it's significant; that will be a higher critical value, making the test more stringent. Epslion can be calculated in three ways (not by you but by the computer using three different formulas): as the lower bound value which is 1/(df num), or more specifically, 1/(a-1); or with the Greenhouse-Geisser formula which is a little less conservative so there's greater power / better chance of finding significance; or using the Huynh-Feldt formula, which is the least conservative / most liberal / most powerful and will give the largest value for epsilon (and therefore the highest values for the df). The largest POSSIBLE value of epsilon is 1, meaning there's no lowering of the df at all; this happens when the sphericity assumption is met (which would be indicated when Mauchly's test is NON-significant).

Now for the concrete example in the HW10 output: notice the epsilon value of .5 for the lower bound (ie, 1/(3-1)), of .805 by the Greenhouse Geisser formula, and of 1.0 by Huynh-Feldt (meaning H-F makes no adjustment in these data, which I guess isn't that surprising given that the Mauchly test suggests no violation of sphericity in this case). Then look at the numerator df for each: originally it's 3-1=2, but multiplying by the lower bound epsilon of 1/2 it becomes 1 -- the lower bound value of df num will always be 1 since you multiply the numerator df by 1/(the numerator df) and it's as if you only have two groups, making it impossible to violate sphericity. Consider the G-G adjustment: you take the numerator df of 2 and multiply by .805, and there's the 1.610 right there in the output as the new df. And using the H-F calculation which in this case means multiplying the df by 1.0, the numerator df is the same as with no violation, ie, 2. As for the denominator df, uncorrected it's 10; the lower bound value is 10 x 1/2 = 5, the G-G value is 10 x .805 = 8.05 (effectively 8), and the H-F value is 10 x 1.0 which remains 10. Note that the H-F epsilon is usually another fraction, higher than the G-G epsilon but lower than 1; in this case, the H-F formula just didn't see any need for a correction.
TOTAL DF IN REPEATED MEASURES DESIGNS

All semester we've often said the total df is the total number of subjects minus 1. But that was for between-groups factors, where every subject gave just one observation. Let's be clear now: the total df is really the total number of OBSERVATIONS minus 1. Which you already know, I'm just making it explicit. You already know, because you know the df for a repeated measures design. On HW 10 there were three conditions and 6 subjects. The total df wasn't the six subjects minus 1. It was the 18 observations minus 1. Look:

A: df = a-1 = 2

S: df = n-1 = 5

AS: df = (a-1)(n-1) = 10

so the total df = 17 which is equal to the total number of observations minus 1.

BONFERRONI TYPE I ERROR CONTROL FOR SIMPLE EFFECTS AND INTERACTION CONTRASTS

When you do further analyses to understand an interaction, it makes sense to control the Type I error rate since there could be several simple effects to test, or various interaction contrasts. In that case the Bonferroni correction seems applicable: if you're looking at 2 interaction contrasts, divide your intended .05 alpha by 2 and only consider them significant if p<.025. If you're looking at 3 simple effects (eg, 3 separate lines on an interaction graph), divide your intended .05 alpha by 3 and only consider them significant if p<.017. And so forth.

BONFERRONI TYPE I ERROR CORRECTION FOR ALL REPEATED MEASURES POST HOC TESTS

Since Tukey and most other post hoc tests can't be used with repeated factors (eg, to compare repeated factor means of a1 vs a2, a1 vs a3, a2 vs a3 -- probably just as paired sample t-tests), use the Bonferroni correction. If there are three comparisons to make, divide .05 by 3 and only consider each of them significant if p<.017. If there are four levels and therefore six comparisons, divide .05 by 6 and only consider each of them significant if p<.0083. It's harder to find significance with more and more groups, so be conservative in how big your family of comparisons is. The Sidak modification of Bonferroni is also okay to use. And maybe the Fisher LSD which is just an uncorrected t-test, provided the omnibus F for the repeated factor is significant, but it might be too lax in controlling Type I error.

POST HOC TESTS CONTROLLING TYPE I ERROR

Here's a refresher about the general ways the post hoc tests work, in case it's useful (probably redundant with the Study Guide above):

1) Bonferroni and Sidak change the alpha used to evaluate significance

2) Dunnet, Tukey, and FIsher-Hayter calculate a minimum difference D such that any two means that are at least that far apart count as significantly different

3) Scheffé increases the critical F value that must be exceeded for a test to yield significance

4) Fisher LSD is just a t-test on the two means being compared, assuming omnibus F is significant

5) Fisher LSD and Fisher-Hayter require omnibus F to be significant first; all others do not

SOURCES OF VARIANCE FOR VARIOUS DESIGNS

Sources of Variance and all error terms for completely between-groups designs are pretty straightforward: list all factors and all their interactions (2 way, 3 way, etc) and then Subjects are nested within the combination of all those factors (eg S/ABC), which is the error term MS for all the effects.

Sources of Variance and all error terms for completely repeated measures designs are also pretty straightforward: again list all factors and all their interactions, and include S as a factor; error terms are the combination of the factor being tested with S (eg the error term for AB is the MS for ABS).

Sources of Variance for mixed designs are pretty easy too, but the only one I'll put on the exam is the one-between-factor A / one-repeated-factor B design which can be notated as Ax(BxS), so you could just memorize the SV: A, S/A, B, AB, SB/A. 

EXTRA CREDIT SOURCES OF VARIANCE

There could be a couple of extra credit points if you're able to apply the scheme for finding Sources of Variance to a larger mixed design, but it won't cost you anything if you don't master that.

WHERE TO FIND SOME TOPICS ON THE WEB PAGE

Here are some things I assume you've found by now but in case you haven't:

The Midterm Summary includes data transformations at the end, which can appear on the Final since we didn't cover them before the Midterm.

If the Study Guide or other source mentions a web link that starts with "cliff.uconn.edu/", substitute "web9.uits.uconn.edu/lundquis/" and you should find it. Or just find the link on the current class page like a normal person.

The Expected Mean Squares handout includes the definition of fixed and random effects. Other than that just understand how EMS specifies what the MS error term must be, don't worry about how to produce the EMS components for every term.

The Keppel Notation handout includes the rules for finding df for any effect. The rest of that handout is unnecessary for us.

The Finding Sources Of Variance handout includes how to make a tree diagram and determine what factors subjects are nested in (if any). Beyond that it's not required for the exam.

TABLES AND FORMULAS

Bring the K&W textbook for tables and formulas. If I can make a new formula page in time for the exam, I will, and I'll try to send it to you ahead of time too. If not, I think the only new formulas are as follows:

1) transformations for addressing violations of homogeneity of variance

2) partial eta-squared (complete eta-squared was on the midterm)

3) complete and partial omega-squared

4) correlation: specifically the Pearson product-moment correlation r, formula is on the web page / syllabus

5) various post-hoc tests that control Type I error for different situations: Bonferroni (aka Dunn), Sidak, Dunnett, Tukey HSD, Fisher LSD (only a footnote in K&W), Fisher-Hayter, Scheffé

6) harmonic mean sample size for Tukey with unequal n's

All formulas will be given to you in some format, if not ahead of time then definitely on the exam.

EXAM NOT CUMULATIVE
The exam is not cumulative except in the sense that it has to be. That is, all your knowledge of ANOVA, t-tests, hypothesis testing, power, etc. is assumed, but I won't throw in a specifically midterm-ish question, or ask about chi-square or confidence intervals or kurtosis (or platypuses). We've covered enough new stuff to fill an exam.

OPTIONAL HW11 ON THE WEB PAGE DUE FRIDAY OR SOMETHING

HW11 is optional, worth 5 points if you turn it in (and, uh, get everything right) but not costing you anything if you don't. It takes you through doing mixed designs in SPSS, with some simple effects testing where you use a global error term for the between-group comparisons and a local error term for the within-group (repeated measures) comparisons. Figuring out how to set up the data and include the right cells could be tricky so it's a good roadmap for when you do it on your own sometime. Don't worry about it till after the exam, it's not even due till Friday and we might be able to accept it a little later, even.

Remember,

"It's not enough that you KNOW statistics. You must LOVE statistics." - me, all the time

