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PSYC 5104 MIDTERM EXAM INFORMATION

Fall 2016
experimental (lab design) vs. non-experimental (field study, quasi-experimental, correlational) research

· manipulation of IV; experimental control; random assignment to distribute nuisance variablility evenly

causal conclusions from experiments only: equalize groups so that treatment will be the only difference between them, then attribute DV differences to that treatment

-
IV causes change; DV is measurement of some characteristic; primary IVs are what you're interested in establishing a causal role for; secondary ("nuisance") IVs also affect DV but are not of interest in the study

nuisance variables: affect DV like another IV, apart from the IV of interest

-
systematic = confound: affects group means differentially - can't attribute DV uniquely to IV

-
non-systematic: present in groups equally - adds noise, obscures treatment effect, but doesn't bias results

ways of controlling nuisance variability (including three methods mentioned by Keppel and Wickens)
-
holding nuisance factor constant - only possible for certain variables (e.g., time of day but not level of depression)

-
matching or having corresponding subjects in each treatment group so groups are equal on average - though groups may still differ on unmeasured variables
-
random assignment turns systematic into nonsystematic - all characteristics, known or unknown, are randomly spread across all groups so they're the same on average (vs. random selection which is for generalizability)

-
counterbalancing so all values of nuisance variable occur  equally in each condition (e.g., order of treatments is varied to eliminate any systematic order effects)

-
making nuisance variable into explicit factor to include in analysis (whereas counterbalancing usually is not analyzed)

-
blocking is a variation on matching: identify homogeneous subgroups and assign randomly from each of them - based on various measured characteristics or nuisance variables

scales of measurement

-
nominal - labeled as different

-
ordinal - objects are ordered

-
interval - differences between scores have consistent meaning

-
ratio - differences between scores have consistent meaning and magnitudes can be compared relative to zero

skewness: positive or negative depending on direction of the stretched side of the distribution (direction it points in -- not where most scores are)

kurtosis: amount of scores in tails of distribution relative to in peak and center

-
leptokurtic has more scores in fatter longer tails, therefore more narrowly peaked in center

-
platykurtic has fewer scores in tails, therefore more of a wider flatter plateau-ish shape in the center

-
NOT the same as spread of data (which is measured by standard deviation)

-
common approximate but incorrect description: kurtosis as amount of scores in "shoulders" of distribution relative to in peak and tails, where leptokurtic has less in shoulders so looks more narrowly peaked, and platykurtic has more in shoulders so looks wider and flatter

normal distribution: skewness and kurtosis are absent; curve determined by equation with only mean and standard deviation as parameters; derived from binomial distribution describing outcomes of infinite number of coin tosses

-
normal distribution is good description of multiple causality which is typical of psychological phenomena: modeled as infinite number of binary (yes-no) decisions contributing to final outcome

-
probabilities of outcome's occurrences found by integrating to find area under curve; resulting probabiliities have been tabled; probability is undefined for any single particular score - only makes sense for some interval (e.g., "a score this large or larger")

two definitions of probability

-
mathematical probability is the long-run frequency of an event occurring out of a large number of possible occurrences, and is the way probability is used in hypothesis testing. By this definition a coin has a 50% probability of coming up heads because when we flip it 100 times we expect 50 heads.

-
personal or subjective probability is a degree of confidence that an event will occur. There is no defined mathematical probability for an event that only happens once even though we might talk informally about the probability (our degree of confidence or belief) of a horse winning a particular race, or of a particular experiment's hypothesis test decision being correct or incorrect. We can't count the number of times the horse won and divide by the total number of times the race was run, because it is only run once. Bayesian statistics address this sense of probability using a very different conceptual scheme.

-
in hypothesis testing we consider the mathematical probability of getting a certain sample drawn from a population from which we might have drawn very many other possible samples (in the long run), and use that probability to make a decision about a null hypothesis (e.g., reject it if we'd only expect to see these data 5 or fewer times in a hundred replications, which is what "p < .05" means).

what p-values mean

-
the p-value at the end of a hypothesis test tells you the probability of getting the data you got, given that the null hypothesis is true. It does NOT tell you the probability that the null hypothesis (or any other hypothesis) is true (or false), given the data that you got.

-
to see why that is, consider how different those two probabilities could be, since they really have nothing to do with one another. The analogy is that the probability of being Italian given that you're in the mafia is pretty high, but the probability of being in the mafia given that you're Italian is almost zero.

probability, odds, and likelihood are separate concepts

-
probability is the long-run frequency of an event occurring, e.g., the probability of an individual having a hat on in winter is the number of people wearing hats out of the total number of people, so 6 hat wearers out of 10 people would give a .60 probability.

-
odds are a ratio of the probability of something occurring to the probability of it not occurring, so the probability of wearing a hat divided by the probability of not wearing a hat is 6/4 or .60/.40 or 1.5-to-1 (usually just written as 1.5). Further, one can make an odds ratio if the odds in two different circumstances are known. If only 2 out of 10 people wear a hat in summer, that probability is .2 and its odds are .2/.8 or .25 (which you could call 1-to-4, or equivalently "4-to-1 against"); comparing winter's hat odds to summer's gives a ratio of 1.5/.25 or 6, meaning the odds of wearing a hat are 6 times greater in winter than in summer.

-
likelihood refers to the  joint probability of all the observations occurring together given a certain model or hypothesis, so it gives a measure of the plausibility of that hypothesis. The likelihood of getting 3 heads and 1 tail out of 4 coin tosses is .5*.5*.5*.5 = .0625 if the coin is fair, but if that coin is biased to give 75% heads the likelihood would be .75*.75*.75*.25 = .1055. The observations are more likely assuming the biased coin, and if we have to choose, we should favor the model or hypothesis with the higher likelihood. Calculation of likelihoods is trivial in this case but requires some pretty complicated math for actual data.
-
hypothesis testing doesn't give us the likelihood for the null hypothesis since that would be the probability of our specific data under that hypothesis -- instead what p-values give us is the probability under the null hypothesis, of our data AND any data more extreme than that (i.e. the probability of a range of results instead of just the result we got). Still, along the lines of how you could compare likelihoods: ideally instead of just rejecting the null hypothesis when its p-value is less than .05, it would be good if we were at least comparing that to the p-value under some other hypothesis, such as that of our specific experimental hypothesis. We could then say something like, the data are THIS (hopefully not very) likely under the null hypothesis, but THIS (hopefully quite) likely under our experimental hypothesis. But that's difficult to calculate and is pretty much never done.

chi-square used for categorical data representing counts or frequencies in categories (or contingency tables)

-
calculate summary statistic "Pearson's chi-square" by squaring each cell's deviation from expected value, dividing by expected value, and summing over all cells; compare this value to the theoretical chi-square distribution on the appropriate degrees of freedom to get probability of those data (i.e., probability of those deviations or greater) under the null hypothesis that those expected values are correct in the population; if that probability is small (typically p < .05) then reject the null hypothesis, i.e., decide those expected values are not a good description of the population.

-
for one-way categorization of frequencies (the "goodness of fit" test), expected values are either divided evenly among the categories or assigned based on knowledge of population baseline frequencies (e.g. if it's known that there are twice as many occurrences of disorder 1 than disorder 2 in the population); the df is the number of categories minus 1 (the number of cells whose totals are free to vary given the total number of observations). Rejecting the null hypothesis means the expected values do not provide a good fit to the data, therefore the conclusion is that those values do not hold in the population.

-
for two-way categorization of frequencies (the "test of independence"), expected values are calculated corresponding to how they would occur if the two classifications were completely unrelated, based only on marginal frequencies without taking account of how frequencies in one classification could be affected by which of the other classification's categories the observations fell into; a cell's expected frequency is thus its row marginal total times its column marignal total divided by the total number of observations (i.e. the proportion of the total falling into that column is applied to the row marginal total); the df is the number of row categories minus 1, times the number of column categories minus 1 (the number of cells whose totals are free to vary given the total number of observations). Rejecting the null hypothesis means there is a significant deviation from the expectation assuming independence of the two variables, therefore the conclusion is that the two classifications are in fact related in the population.

-
effect size is measured by the phi coefficient for two-by-two classifications, or by Cramer's V when there are more than two categories in either dimension; phi may be expressed as phi-squared (as r is often expressed as r-squared) but need not be.

-
to identify which cells are contributing to a significant chi-square for the deviation from expectation, look at each cell's standardized residual, which is its residual (observed minus expected) divided by that residual's standard error (the square root of the cell's expected frequency). Note that a cell's standardized residual is just the square root of its contribution to the chi-square calculation. Since this residual is standardized, it is a z-score and fits the standard normal distribution or "z distribution" so values of 2 or greater can be considered extremely large (i.e. in the extreme 5% of the distribution) and are thus identified as major contributors to the deviation from expectation.

-
alternatively, collapsing some of the categories may aid in pinpointing where the deviations from expectation are occurring (e.g., "children / adults / elderly" could be reclassified as just "children / adults" to see if a significant difference holds up).

-
interpret chi-square contingency tables using odds ratios: odds = probability of being in one category divided by probability of being in other category, e.g., 90% probability becomes odds of 90/10, or 9.0, or "9-to-1"; odds ratio is odds under one condition divided by odds under another condition, e.g., odds of 9 vs odds of 4 yields odds ratio of 9/4 = 2.25 (odds are 2.25 times greater under first condtion than under second); equivalently odds ratio can be expressed in the other direction, as 4/9 = .44 (odds are .44 times less under second condition than under first); "Odds and Probabilities" summary on web page has more detail.

-
assumptions: 1) independence of observations - every observation must fit into one and only one cell in the classification or contingency table, and must not be influenced by any other observation; 2) "non-occurrences" must be included in the calculation, so that every observation is placed into one cell - e.g., don't compare the number of people answering "yes" to a survey question in two different age groups, without also taking account of the number of people who answered "no" in each age group; 3) every cell must have an expected frequency of at least 5 - otherwise the number of values chi-square can take on is very constrained, and their probabilities cannot be described well by the theoretical chi-square distribution which is continuous and describes an infinite number of values of chi-square.

-
Yates's correction for continuity addresses the problem of representing the limited number of possible calculated chi-square values with the continuous theoretical chi-square distribution, but only applies in narrow circumstances and is usually not considered necessary.

-
a theoretical chi-square value is actually the sum of a certain number of randomly sampled squared values from the z-distribution, where the number of squared z values being summed becomes the df for that chi-square distribution; the distribution describes the probabilities of getting sums of various sizes just due to sampling error. The chi-square statistic calculated above happens (unintuitively, but demonstrably) to have that same distribution, so the distribution can say how probable various values of that chi-square statistic are.
-
alternatives to chi-square: McNemar's Test may be appropriate when observations are not independent. Fisher's Exact Test may be appropriate when the row and column margins of a two-by-two table are fixed. This is unusual but could arise if, for instance, a subject guesses for each of eight cups of tea whether the milk was added to the tea or the tea to the milk, but knows ahead of time that there really ARE, say, exactly four cups of tea with milk added second and four with tea added second (call those the row margins), and will therefore also GUESS those numbers (the column margins) -- the only question being whether the four cups she labels as milk-into-tea are actually the four milk-into-tea cups. Fisher's Exact Test doesn't require comparing a result to a theoretical distribution like chi-square to estimate a probability, instead using the number of ways she could have sorted the cups to determine their exact probabilities.
-
a statistic related to chi-square is Cohen's Kappa, a measure of inter-rater reliability that makes use of the same expected value calculations to remove chance agreements from the total number of times two raters agree in their judgements of some observation (e.g. how often two observers agree that an animal has exhibited a particular behavior). It is not applicable to the same situations as chi-square since it requires raters to be rating the same things, which violates chi-square's requirement for non-overlapping classifications.
three types of correlation between two variables, though all three can be calculated the same:

-
product-moment for two continuous variables; point-biserial for one continuous and one dichotomous categorical, as in t-test continuous DV and categorical grouping variable IV; phi coefficient for two dichotomous categorical variables; Cramer's V generalizes phi to variables with more than two categories

-
unusual variations: biserial when the categorical variable is dichotomized from an underlying continuous variable; tetrachoric when both variables represent dichotomies of underlying continuous variables
correlation coefficient ranges from -1 to 1 with 0 representing no relationship; squared correlation coefficient ranges from 0 to 1 and represents proportion of variance in DV accounted for by IV; the sign of phi is arbitrary since either group could be labeled 1 or 2 and would give opposite signs with labels reversed

descriptive statistics for central tendency: mean, median (for highly skewed data, ordinal data, or data with incomplete or unspecified values that prevent calculation of a mean), mode (for categorical data where counting is the only operation possible, or for identifying multiple peaks in a distribution)

descriptive statistics for variability: variance ((2 for population or s2 for sample), standard deviation (square root of variance)

-
variance = sum of squared deviations from the mean divided by degrees of freedom: s2 = SS/df, though for the whole population the variance (2 = SS/N
-
variance (2 is expressed in square units (meters, grams, symptoms - squared!) so standard deviation ( is useful for interpretation in original units

-
sample is less variable than population because sampling will tend to capture scores closer to ( than to the extremes; also the sample mean is defined as the number that is closest to all scores in the sample, so the sum of squared deviations to the sample mean is smaller than to any other number, including the true population mean; so the sum of squared deviations to the population mean would have to yield a larger SS and thus larger variance

-
estimating population variance from sample variance thus requires dividing SS by (N-1) instead of by N, which boosts the sample variance enough to give an estimate of the population variance that is "unbiased" (i.e., accurate in the long-run)

-
degrees of freedom (df) = N-1: the number of scores that are free to vary once the population parameter ( has been estimated by the sample mean -- since once N-1 scores are known, the remaining score is the only one that could result in the calculated sample mean

-
[technically one could say that the population variance is also SS/df, but in the population, df=N since nothing has been estimated and all scores are free to vary in the population - ignore this if confusing]

z-scores: distance from score to mean in units of the standard deviation

-
population: z = (Y-()/( if ( known

-
sample: z = (Y-M)/s if ( not known

-
z-score distribution has mean = 0 and standard deviation = 1, regardless of shape of distribution (may be skewed or kurtotic, if that's a word): z transformation is linear and thus changes scale but not shape of distribution

-
the "z distribution" is the standard normal curve: a normal distribution expressed as z-scores so the mean = 0 and standard deviation = 1

-
probabilities for areas under the standard normal curve can be applied to any normally distributed variable once the scores are converted to z-scores, i.e., expressed as "how many standard deviations from the mean a score is"

standard error of the mean (sometimes abbreviated SEM)

-
imagine taking all possible samples of a given size N from a population with mean ( and standard deviation (, and considering those sample means as forming their own distribution

-
mean of all the sample means will be ( again, but their standard deviation is not ( -- it's (/√N and is called the standard error of the mean, and it's literally the standard deviation ( of the distribution of the means of all possible samples of size N

-
"standard error" of the mean is equivalent to "standard deviation" of the mean, but the phrase "standard error" is almost never used in place of "standard deviation" when talking about the distribution of original scores -- so the phrase "standard error" almost always implies "of the mean"

-
notated as ( with a Y-bar subscript, or (here) an M subscript for typographical convenience: (M 

-
but the standard deviation of the scores, (, is rarely written with a Y subscript (like (Y ) to indicate it refers to the scores, since that's the default assumption

-
standard error of the mean can be estimated from a single sample without knowing the population value of (, in which case the estimate is sM = s/√N; note that this estimate will be different for every sample taken, though it will be smaller as sample size increases due to the increasing denominator

-
as standard error shrinks, sample means vary less around the population mean and are better estimates of (
z-scores can be calculated for scores as their distance from their mean ( in units of their standard deviation (
-
z scores can also be calculated for sample means as their distance from their mean ( in units of their standard deviation, which is the standard error (M 

-
so both z = (Y-()/( and z = (M-()/(M are legitimate z-scores whose probabilities of occurence can be described by the tabled values of the z distribution

-
z scores with very small associated probabilities (p-values) can be regarded as unlikely occurrences, whether they are scores that are a certain distance from their mean, or sample means a certain distance from their mean (where the means are the same but the distances are measured in terms of ( and (M  respectively)

-
hypothesis tests about sample means can thus be carried out using the z distribution whenever ( is known, since it can be used to compute (M 

t-tests follow the same logic but are used when the population standard deviation ( is unknown and must be estimated by the sample standard deviation s, yielding the estimated standard error sM

-
then find probabilities in the t distribution rather than the z distribution

-
t expresses the distance of a sample mean M from its population mean ( in units of its estimated standard error sM , parallel to z score calculation: t(df) = (M-()/sM = how many estimated standard errors from the hypothesized value is the sample value

-
t distribution is wider and more spread out than z (i.e., leptokurtic), and moreso when N is small -- because it takes account not just of sampling variability in estimating the means but also the fact that the estimated standard error is itself variable from sample to sample

-
t is thus a different distribution for every sample size, and particular t distributions are identified by their df rather than N though these are clearly closely related

-
this calculated value is compared to a t distribution on df = N-1 to find its associated p-value, which if small, indicates a relatively less likely sample mean to have obtained given that the population mean ( is whatever it was hypothesized to be

-
when the p-value is less than .05, hypothesis testing convention suggests we consider that sample mean to have been drawn from a population whose mean is other than the hypothesized (
-
one-tailed null hypothesis for t puts the whole 5% of the tail area on one side of the curve; only useful if you'd REALLY ignore the extreme other direction, e.g., if it were impossible to get scores in that direction

applying this t-test to paired data in which each subject contributes two data points

-
find each subjects difference score D = Y1 - Y2, and do the one sample t test on the difference scores exactly as described

-
the hypothesized mean of the difference scores in the population would be 0, corresponding to the null hypothesis that the two scores' means are the same in the population

-
since this procedure has converted the two sets of scores into a single set of difference scores, the df is the number of difference scores minus 1

applying this t-test to two independent samples where the scores cannot be paired together to make difference scores

-
in place of a single sample mean, the quantity is now the difference between two means, the hypothesized population value is the difference between the two population means (which is hypothesized to be 0), and the denominator is the standard error of that difference between two means

-
t(df) = (M1 - M2) - ((1 - (2)/sM1 - M2 

-
df = (N1 -1) + (N2 -1) or the sum of the df in each sample -- or, the total number of observations minus the number of parameters being estimated from the data (N1 + N2 - 2 sample means estimating the 2 population means (1 and (2)
-
the numerator becomes simply M1 - M2 since (1 - (2 = 0

-
the denominator is calculated like the single sample standard error sM = s/√N only we think of it as the equivalent expression √(s2/N) and add both samples' standard errors together: sM1 - M2 = √(s12/N1 + s22/N2)

-
the variances employed in the calculation for the standard error are assumed to be estimating the same underlying population variance, representing the irreducible subject differences and experimental error in the population

-
therefore s12 and s22 can be combined or "pooled" to yield a weighted average of the variances that should be the best estimate of that single population variance

-
find the pooled variance by adding together each sample's SS and df and dividing:


sp2 = (SS1 + SS2) / (df1 + df2) -- or use an equivalent version of this formula
-
if either s12 = s22 (unlikely) or N1 = N2 (which is desirable), pooling will yield the same result as the original formula; however if N1 ( N2 the  the pooled variance counts the larger sample size as giving a more valuable estimate of the population variance (weighting each sample according to its df)

assumptions: independence of observations, normality of scores distributions, homogeneity of variance

-
independence is mainly a function of good experimental design; can be assessed through intra-class correlation and other measures
-
normality can be assessed by inspecting histograms or by a Q-Q plot; as long as N isn't very small (not < 30, though others stretch it to not < 20), the Central Limit Theorem says that even if the scores are not normally distributed in the population, their sample means will be normally distributed

-
homogeneity of variance can be tested by Levene's test (or better, the Brown-Forsythe test), which, if significant, indicates the two variances are not estimating the same population variance; in that case, do NOT pool them, but calculate the standard error based on the original unpooled-variances formula, and look up that resulting t on df adjusted for this change (by the Welch-Satterthwaite correction) and using nearest integer to the decimal df result; see SPSS's t-test output labeled "equal variances not assumed"; better practice is to use the Welch-Satterthwaite correction (sometimes called "Welch's t" as opposed to "Student's t") whenever N's are unequal and heterogeneity of variance could therefore potentially affect calculations, instead of using Levene or another test as a first-step "gatekeeper".
confidence interval turns t formula inside-out to solve for ( (or for (1 - (2)
-
for 95% CI, find t(df) for p = .05; use df based on your sample size; for 99% CI, find t(df) for p = .01 and substitute into the following

-
single sample: M - t.05(df)*sM ≤ (  ≤ M + t.05(df)*sM 

-
two independent samples: (M1 - M2) - t.05(df)*sM1 - M2 ≤ ((1 - (2) ≤ (M1 - M2) + t.05(df)*sM1 - M2
-
for the population, constructing a CI using that method but putting in numbers from other samples would yield as many different CI's as there are samples, and 95% of them would be expected to include the true population mean

-
for the sample, the sample mean would be significantly different (at the chosen p-value level) from all values outside of the CI if they were the hypothesized values in a t-test; all values within the CI would yield non-significant differences

-
ignoring the hypothesis testing aspect, CI is also useful as an estimate of a statistic and its variability based on the width of the interval (more confidence in an estimate with a narrower interval) without regard to whether the interval contains 0 or any other particular hypothesized value.
steps in hypothesis testing

-
ask whether two samples come from two different populations or are they from the same population?

-
state H0 and H1 
-
reason for choice of H0 is that it has a sampling distribution we know (when the population value is the hypothesized one, e.g., zero); H1 is every other distribution (when the population value is not the hypothesized one, e.g., zero)

-
choose ( (alpha) as the probability that will be the criterion for rejecting H0 - small enough to be considered evidence of unlikelihood (by convention, .05 or 5%)

-
consequence is knowing that on those 5% of occasions when H0 is true and p < .05, we will nevertheless incorrectly reject H0 making a Type I error (probability of Type I error = ()

-
can reject or fail to reject H0 - latter is not an acceptance of H0 , merely acknowledgement that there is not evidence for rejecting it

-
occasions when H0 is false and we fail to reject it are Type II error (probability of Type II error = ()

-
then probability of correctly rejecting H0 is (1-() = power

NHST controversy

-
p-values often incorrectly taken to mean: probability of H0 , or indirectly of H1 , or of successful replication of the finding, or that smaller p-values mean greater confidence and larger effect of the treatment

-
Cohen points out that what we want is the probability of the null hypothesis given the data [p(H0 | data)] but what p-values actually tell us is the probability of the data given the null hypothesis [p(data | H0)]

-
to get from the latter to the former, we'd need to apply Bayes's Theorem to determine the "inverse probability"; but that requires making provisional guesses about the likelihood of some other possible hypotheses

-
it's correct to say "p is the probability that these results WOULD occur due to chance" (making it conditional upon the truth of the null hypothesis) but not that "p is the probability that these results DID occur due to chance" (implying we know the null hypothesis is true)

some objections to null hypothesis significance testing:

-
H0 always false, realistically; NHST's information is not useful compared to effect size or at least a CI; a specific plausible alternative hypothesis should be employed; logic of denying a probable consequence doesn't work the same as denying an absolute consequence (the latter would indeed falsify the premise); we need Bayes's Theorem to reach the real conclusion of interest (inverse probability); prior assumptions that are required for Bayesian statistics have to be implicit in significance testing anyway; the historical outcome of the attempt at a compromise hybrid of Fisher's and Neyman & Pearson's procedures is not consistent or sensible

alternatives or supplements to NHST:

-
Bayesian statistics; emphasize reporting of effect size measures; emphasize confidence intervals as "interval estimates" instead of "point estimates" (such as sample means), without focusing on whether the CI contains zero as in a significance test; other variations on p-values may be used (some journals have asked for prep or "probability of replication")
power is one of four interrelated elements, any three of which determine the fourth

-
( = probability of Type II error so power = (1-()

-
( is set by convention at .05 -- though if it's been set at .01, relaxing it to .05 would increase power

-
N (sample size) -- increasing N will increase power, and for a given total sample size, maximum power is attained with equal group sizes

-
effect size - larger effect will be easier to detect (so H0 more easily rejected); effect size is roughly = (mean difference) / (variability), so it can be increased by increasing the mean difference (through a stronger manipulation perhaps) or by reducing the within-groups variability (through sampling more homogeneous groups or increasing experimental control)

F distribution represents probabilities of obtaining certain size ratios of two independent estimates of the same population variance

-
described by TWO df parameters, instead of just one as in the t distribution

-
F(df1, df2) = F(df for numerator, df for denominator)

-
for two groups, df1 = 2 - 1 = 1, and F(1, df2) = [t(df2)]2
-
when H0 is true, calculated variances are estimating the same underlying experimental error variance and their ratio is a true instance from the F distribution; if H1 true, variances are different and if their ratio is extreme enough given our ( criterion, we conclude it's NOT a true F (and reject H0)

partitioning total SS into SS for treatment effect and SS for experimental error allows caclulation of independent estimates of variability, so these form a true F ratio

-
for each score:  (Yij - MT )= (Yij - Mj )+ (Mj - MT )

-
for the SS: ((Yij - MT)2 = ((Yij - Mj)2 + n((Mj - MT)2 or SStot = SSerr + SStrtmt 
SEE ANOVA HANDOUT (on web page) for more explanation

two kinds of effect size measure

standardized differences among means -- Cohen's d for t-tests, Cohen's f for ANOVA

-
used in many power calculations

-
d = (M1 - M2)/sp = standardized difference between two means; uses pooled standard deviation, which is analogous to t-test pooling and equivalent to √MSS/A (sometimes referred to as "RMSe" for "root mean square error"); in single sample t-test, use d = (M - ()/s where s is standard deviation of that sample; in paired samples or repeated measures t-test, use standard deviation of the calculated difference scores

-
f = (A / (error in population; in sample, √[(a-1)(F-1)/an]; used in (and calculated by) GPower3; applicable to any number of means

proportion of DV variability accounted for by IV - applicable to any number of means

-
R2 = SSA / SStotal in sample, varying from 0 to 1 and often expressed as a percentage; often referred to as (2 (eta-squared) though Keppel and Wickens follow the practice of reserving Greek letters for the corresponding population parameters; R2 can be corrected to reflect the population value (but that's more commonly referred to as "adjusted R2" rather than "(2") -- correction is needed because R2 is calculated as if all error variance present in sample is real variance to be explained, when actually that will lead to overestimating the amount of explanatory power the IV has

-
omega-squared: (2 = (2A / (2total in population; in sample, (a-1)(F-1)/[(a-1)(F-1) + an]; removes error variance from IV's effect to obtain a purer measure of the amount of variability it explains

linear model: Yij = (T + (j + Eij  [score is sum of grand mean plus treatment's effect as a deviation from grand mean plus unaccountable error deviation of subject's score from the treatment mean]; assumptions of ANOVA are same as for t-test, but are shown to be specifically about the error deviations, as follows:

-
all Eij are independent and have the same distribution for all subjects within a group (random sampling)

-
different groups also all have the same distribution of Eij so groups only differ by their means (giving rise to the other two familiar assumptions:)

-
"same distribution" means their variances are the same, since that trumps skew or kurtosis for "sameness"

-
"same distribution" they have is normal, which allows the F distribution to be used in hypothesis testing

violations of assumptions:

independence - whole experiment invalidated; at minimum, observations are closer so MSS/A is smaller and F is inflated

-
non-random sampling can cause this; also, a kind of non-random sample results from subject loss - may be ignorable or not, depending on relationship of subject loss to treatments

violations of homogeneity of variance and normality do not invalidate the study but affect accuracy of p-values, typically by positively biasing F though both directions of bias are possible under different circumstances

F is fairly robust to normality violations given sample size > 15 or 20 (some recommend 30) and fairly equal N in each group, due to Central Limit Theorem

-
but sampling from heterogeneous subpopulations can cause non-normality (bimodal even), inflating MSS/A error and reducing power, and then who does that mean-of-different-subgroups represent anyway?

-
delete outliers if justifiable, though "trimming" will make scores artifically closer together so MSS/A is smaller and F inflated

-
if very non-normal, use nonparametric tests or transform variables to make distributions more normal (though K&W reserve transforms for homogeneity of variance violations)

F less robust to violations of homogeneity of variance
-
variances can differ inherently in sampled populations, can be a treatment effect, or may be proportional to size of scores (means)

-
heterogeneity of variance inflates F by underestimating MSS/A , and it's worse when N's are unequal

-
Levene's test for homogeneity of variance works by performing an ANOVA on the deviations from the mean for each group, with equal variances corresponding to roughly equal sized deviations across groups; Brown-Forsythe test is better -- less sensitive to normality because it uses deviations from the median; Hartley's Fmax is out of date but in many textbooks -- too sensitive to normality violations
nonlinear tranforms for homogeneity of variance: really specific recommendations in K&W are probably too conservative -- instead, use whatever transform gets the data to meet the necessary assumptions

-
transforming data means applying some operation to every DV score Y and then analyzing the resulting new scores instead of the original measurements

-
counts of events often have variances proportional to means: use √(Y + .5) since for Y < 1, √(Y) is larger than Y

-
times (like RT's) have std dev's proportional to means: use log (Y + 1) since for Y < 1, log(Y) is negative

-
proportions have more variability in middle (.5) than on ends (0, 1; floor, ceiling): use 2arcsin(√Y) = twice the angle whose sine is √Y (where sine ranges from 0 to 1)

reporting transformed scores:

-
report what transform was used, then analyze transformed means, then report those means reverse-transformed back into the original units; don't report original raw means in connection with significance tests, since those haven't been shown to differ

aside from transformations, heterogeneous variances might call for nonparametric tests or the Welch-Satterthwaite df correction when within-group variances cannot be pooled, as in the unequal variances t-test; transformations have been preferred in the past, but at least in the case of t-tests, better practice is probably to use the Welch-Satterthwaite correction instead of transforming to correct for heterogeneity of variance (and even instead of non-parametric tests)
